These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 32667185)
1. Fe Gessner G; Rühl P; Westerhausen M; Hoshi T; Heinemann SH ACS Chem Biol; 2020 Aug; 15(8):2098-2106. PubMed ID: 32667185 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic insight into the heme-independent interplay between iron and carbon monoxide in CFTR and Slo1 BK Wang G Metallomics; 2017 Jun; 9(6):634-645. PubMed ID: 28474046 [TBL] [Abstract][Full Text] [Related]
3. Dicarbonyl-bis(cysteamine)iron(II): a light induced carbon monoxide releasing molecule based on iron (CORM-S1). Kretschmer R; Gessner G; Görls H; Heinemann SH; Westerhausen M J Inorg Biochem; 2011 Jan; 105(1):6-9. PubMed ID: 21134596 [TBL] [Abstract][Full Text] [Related]
4. Heme is required for carbon monoxide activation of mitochondrial BK Rotko D; Bednarczyk P; Koprowski P; Kunz WS; Szewczyk A; Kulawiak B Eur J Pharmacol; 2020 Aug; 881():173191. PubMed ID: 32422186 [TBL] [Abstract][Full Text] [Related]
5. Regulation of endothelial BK channels by heme oxygenase-derived carbon monoxide and caveolin-1. Riddle MA; Walker BR Am J Physiol Cell Physiol; 2012 Jul; 303(1):C92-C101. PubMed ID: 22555843 [TBL] [Abstract][Full Text] [Related]
7. A re-investigation of [Fe(L-cysteinate)2(CO)2]2-: an example of non-heme CO coordination of possible relevance to CO binding to ion channel receptors. Hewison L; Johnson TR; Mann BE; Meijer AJ; Sawle P; Motterlini R Dalton Trans; 2011 Sep; 40(33):8328-34. PubMed ID: 21761077 [TBL] [Abstract][Full Text] [Related]
9. Studies of the heme coordination and ligand binding properties of soluble guanylyl cyclase (sGC): characterization of Fe(II)sGC and Fe(II)sGC(CO) by electronic absorption and magnetic circular dichroism spectroscopies and failure of CO to activate the enzyme. Burstyn JN; Yu AE; Dierks EA; Hawkins BK; Dawson JH Biochemistry; 1995 May; 34(17):5896-903. PubMed ID: 7727447 [TBL] [Abstract][Full Text] [Related]
10. Crystal structures of ferrous and CO-, CN(-)-, and NO-bound forms of rat heme oxygenase-1 (HO-1) in complex with heme: structural implications for discrimination between CO and O2 in HO-1. Sugishima M; Sakamoto H; Noguchi M; Fukuyama K Biochemistry; 2003 Aug; 42(33):9898-905. PubMed ID: 12924938 [TBL] [Abstract][Full Text] [Related]
11. Carbon monoxide stimulates the Ca2(+)-activated big conductance k channels in cultured human endothelial cells. Dong DL; Zhang Y; Lin DH; Chen J; Patschan S; Goligorsky MS; Nasjletti A; Yang BF; Wang WH Hypertension; 2007 Oct; 50(4):643-51. PubMed ID: 17724275 [TBL] [Abstract][Full Text] [Related]
12. Block of large conductance Ca(2+)-activated K+ channels in rabbit vascular myocytes by internal Mg2+ and Na+. Morales E; Cole WC; Remillard CV; Leblane N J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):701-16. PubMed ID: 8887777 [TBL] [Abstract][Full Text] [Related]
13. Effects of frequently applied carbon monoxide releasing molecules (CORMs) in typical CO-sensitive model systems - A comparative in vitro study. Stucki D; Krahl H; Walter M; Steinhausen J; Hommel K; Brenneisen P; Stahl W Arch Biochem Biophys; 2020 Jul; 687():108383. PubMed ID: 32335048 [TBL] [Abstract][Full Text] [Related]
14. Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Williams SE; Wootton P; Mason HS; Bould J; Iles DE; Riccardi D; Peers C; Kemp PJ Science; 2004 Dec; 306(5704):2093-7. PubMed ID: 15528406 [TBL] [Abstract][Full Text] [Related]
15. Preconditioning with the BK Dai H; Wang M; Patel PN; Kalogeris T; Liu Y; Durante W; Korthuis RJ Am J Physiol Heart Circ Physiol; 2017 Nov; 313(5):H988-H999. PubMed ID: 28822969 [TBL] [Abstract][Full Text] [Related]
16. Critical roles of Leu99 and Leu115 at the heme distal side in auto-oxidation and the redox potential of a heme-regulated phosphodiesterase from Escherichia coli. Yokota N; Araki Y; Kurokawa H; Ito O; Igarashi J; Shimizu T FEBS J; 2006 Mar; 273(6):1210-23. PubMed ID: 16519686 [TBL] [Abstract][Full Text] [Related]
17. T-Type Ca2+ Channel Regulation by CO: A Mechanism for Control of Cell Proliferation. Duckles H; Al-Owais MM; Elies J; Johnson E; Boycott HE; Dallas ML; Porter KE; Boyle JP; Scragg JL; Peers C Adv Exp Med Biol; 2015; 860():291-300. PubMed ID: 26303493 [TBL] [Abstract][Full Text] [Related]
18. Targeting Mitochondrial Large-Conductance Calcium-Activated Potassium Channel by Hydrogen Sulfide via Heme-Binding Site. Walewska A; Szewczyk A; Krajewska M; Koprowski P J Pharmacol Exp Ther; 2022 May; 381(2):137-150. PubMed ID: 35184043 [TBL] [Abstract][Full Text] [Related]
19. Carbon monoxide-mediated activation of large-conductance calcium-activated potassium channels contributes to mesenteric vasodilatation in cirrhotic rats. Bolognesi M; Sacerdoti D; Piva A; Di Pascoli M; Zampieri F; Quarta S; Motterlini R; Angeli P; Merkel C; Gatta A J Pharmacol Exp Ther; 2007 Apr; 321(1):187-94. PubMed ID: 17229879 [TBL] [Abstract][Full Text] [Related]
20. Extrapolating microdomain Ca(2+) dynamics using BK channels as a Ca(2+) sensor. Hou P; Xiao F; Liu H; Yuchi M; Zhang G; Wu Y; Wang W; Zeng W; Ding M; Cui J; Wu Z; Wang LY; Ding J Sci Rep; 2016 Jan; 6():17343. PubMed ID: 26776352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]