These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 32667190)

  • 41. A Long-Cycle-Life Self-Doped Polyaniline Cathode for Rechargeable Aqueous Zinc Batteries.
    Shi HY; Ye YJ; Liu K; Song Y; Sun X
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16359-16363. PubMed ID: 30307094
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of Nickel Coated Multi-Walled Carbon Nanotubes on Electrochemical Performance of Lithium-Sulfur Rechargeable Batteries.
    Wu X; Yao S; Hou J; Jing M; Qian X; Shen X; Xiang J; Xi X
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2482-487. PubMed ID: 29648771
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interlayer-Spacing-Regulated VOPO
    Zhou L; Liu Q; Zhang Z; Zhang K; Xiong F; Tan S; An Q; Kang YM; Zhou Z; Mai L
    Adv Mater; 2018 Aug; 30(32):e1801984. PubMed ID: 29939435
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Redox-Active Iron-Organic Framework Cathodes for Sustainable Magnesium Metal Batteries.
    Zhao Y; Chen S; Zhou M; Pan M; Sun Y; Zhang D; Zhang S; Wang Y; Li M; Zeng X; Yang J; Wang J; NuLi Y
    ACS Nano; 2024 Aug; 18(33):22356-22368. PubMed ID: 39109407
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potassium-Hydrogen Hybrid Ion Alkaline Battery: A New Rechargeable Aqueous Battery Combined a K
    Hua R; Xu C; Yang H; Qu D; Zhang R; Liu D; Tang H; Li J; Qu D
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38597319
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ascorbic Acid-Assisted Synthesis of Mesoporous Sodium Vanadium Phosphate Nanoparticles with Highly sp(2) -Coordinated Carbon Coatings as Efficient Cathode Materials for Rechargeable Sodium-Ion Batteries.
    Hung TF; Cheng WJ; Chang WS; Yang CC; Shen CC; Kuo YL
    Chemistry; 2016 Jul; 22(30):10620-6. PubMed ID: 27346677
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hierarchical WSe
    Xu J; Wei Z; Zhang S; Wang X; Wang Y; He M; Huang K
    J Colloid Interface Sci; 2021 Apr; 588():378-383. PubMed ID: 33422786
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure Design of Long-Life Spinel-Oxide Cathode Materials for Magnesium Rechargeable Batteries.
    Shimokawa K; Atsumi T; Okamoto NL; Kawaguchi T; Imashuku S; Wagatsuma K; Nakayama M; Kanamura K; Ichitsubo T
    Adv Mater; 2021 Feb; 33(7):e2007539. PubMed ID: 33458915
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent Progress on Layered Cathode Materials for Nonaqueous Rechargeable Magnesium Batteries.
    Li L; Lu Y; Zhang Q; Zhao S; Hu Z; Chou SL
    Small; 2021 Mar; 17(9):e1902767. PubMed ID: 31617315
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polyimide@Ketjenblack Composite: A Porous Organic Cathode for Fast Rechargeable Potassium-Ion Batteries.
    Zhang C; Xu Y; He K; Dong Y; Zhao H; Medenbach L; Wu Y; Balducci A; Hannappel T; Lei Y
    Small; 2020 Sep; 16(38):e2002953. PubMed ID: 32815290
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Morphology Engineering of VS
    Zhang X; Tu X; Liu Y; Zhu Y; Zhang J; Wang J; Shi R; Li L
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37442-37453. PubMed ID: 37494549
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anti-site mixing governs the electrochemical performances of olivine-type MgMnSiO4 cathodes for rechargeable magnesium batteries.
    Mori T; Masese T; Orikasa Y; Huang ZD; Okado T; Kim J; Uchimoto Y
    Phys Chem Chem Phys; 2016 May; 18(19):13524-9. PubMed ID: 27140839
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Long-lived Aqueous Rechargeable Lithium Batteries Using Mesoporous LiTi2(PO4)3@C Anode.
    Sun D; Tang Y; He K; Ren Y; Liu S; Wang H
    Sci Rep; 2015 Dec; 5():17452. PubMed ID: 26648263
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Decay Mechanism Related to Structural and Morphological Evolution in Lithium-Rich Cathode Materials for Lithium-Ion Batteries.
    Liu Q; Zheng W; Lu Z; Zhang X; Wan K; Luo J; Fransaer J
    ChemSusChem; 2020 Jun; 13(12):3237-3242. PubMed ID: 32250058
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium-Oxygen Batteries.
    Xue H; Wu S; Tang J; Gong H; He P; He J; Zhou H
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8427-35. PubMed ID: 26967936
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode.
    Wang S; Jiao S; Wang J; Chen HS; Tian D; Lei H; Fang DN
    ACS Nano; 2017 Jan; 11(1):469-477. PubMed ID: 27977919
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries.
    NuLi Y; Chen Q; Wang W; Wang Y; Yang J; Wang J
    ScientificWorldJournal; 2014; 2014():107918. PubMed ID: 24587704
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Birnessite Nanosheet Arrays with High K Content as a High-Capacity and Ultrastable Cathode for K-Ion Batteries.
    Lin B; Zhu X; Fang L; Liu X; Li S; Zhai T; Xue L; Guo Q; Xu J; Xia H
    Adv Mater; 2019 Jun; 31(24):e1900060. PubMed ID: 31045288
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Molybdenum Polysulfide
    Chen D; Tao D; Ren X; Wen F; Li T; Chen Z; Cao Y; Xu F
    ACS Nano; 2022 Dec; 16(12):20510-20520. PubMed ID: 36410730
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facile synthesis and application of CuS nanospheres in aqueous and organic lithium ion batteries.
    Li Q; Xue Y; Zhu Y; Qian Y
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1265-9. PubMed ID: 23646616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.