BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32667250)

  • 1. Mucus-Penetrating Particles and the Role of Ocular Mucus as a Barrier to Micro- and Nanosuspensions.
    Popov A
    J Ocul Pharmacol Ther; 2020; 36(6):366-375. PubMed ID: 32667250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclosporine A Nanosuspensions for Ophthalmic Delivery: A Comparative Study between Cationic Nanoparticles and Drug-Core Mucus Penetrating Nanoparticles.
    Yan R; Xu L; Wang Q; Wu Z; Zhang H; Gan L
    Mol Pharm; 2021 Dec; 18(12):4290-4298. PubMed ID: 34731571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mucus-Penetrating Nanosuspensions for Enhanced Delivery of Poorly Soluble Drugs to Mucosal Surfaces.
    Yu T; Chisholm J; Choi WJ; Anonuevo A; Pulicare S; Zhong W; Chen M; Fridley C; Lai SK; Ensign LM; Suk JS; Hanes J
    Adv Healthc Mater; 2016 Nov; 5(21):2745-2750. PubMed ID: 27717163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PEGylation for enhancing nanoparticle diffusion in mucus.
    Huckaby JT; Lai SK
    Adv Drug Deliv Rev; 2018 Jan; 124():125-139. PubMed ID: 28882703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mucus penetrating nanoparticles: biophysical tool and method of drug and gene delivery.
    Ensign LM; Schneider C; Suk JS; Cone R; Hanes J
    Adv Mater; 2012 Jul; 24(28):3887-94. PubMed ID: 22988559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus ex Vivo and Distribution in Vivo.
    Xu Q; Ensign LM; Boylan NJ; Schön A; Gong X; Yang JC; Lamb NW; Cai S; Yu T; Freire E; Hanes J
    ACS Nano; 2015 Sep; 9(9):9217-27. PubMed ID: 26301576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery.
    Newby JM; Seim I; Lysy M; Ling Y; Huckaby J; Lai SK; Forest MG
    Adv Drug Deliv Rev; 2018 Jan; 124():64-81. PubMed ID: 29246855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of KPI-121 0.25% in the treatment of dry eye disease: penetrating the mucus barrier to treat periodic flares.
    Gupta PK; Venkateswaran N
    Ther Adv Ophthalmol; 2021; 13():25158414211012797. PubMed ID: 34017938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mucoadhesive nanoparticles may disrupt the protective human mucus barrier by altering its microstructure.
    Wang YY; Lai SK; So C; Schneider C; Cone R; Hanes J
    PLoS One; 2011; 6(6):e21547. PubMed ID: 21738703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airway mucus in pulmonary diseases: Muco-adhesive and muco-penetrating particles to overcome the airway mucus barriers.
    Pangeni R; Meng T; Poudel S; Sharma D; Hutsell H; Ma J; Rubin BK; Longest W; Hindle M; Xu Q
    Int J Pharm; 2023 Mar; 634():122661. PubMed ID: 36736964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse.
    Maisel K; Ensign L; Reddy M; Cone R; Hanes J
    J Control Release; 2015 Jan; 197():48-57. PubMed ID: 25449804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable method to produce biodegradable nanoparticles that rapidly penetrate human mucus.
    Xu Q; Boylan NJ; Cai S; Miao B; Patel H; Hanes J
    J Control Release; 2013 Sep; 170(2):279-86. PubMed ID: 23751567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation.
    Schneider CS; Xu Q; Boylan NJ; Chisholm J; Tang BC; Schuster BS; Henning A; Ensign LM; Lee E; Adstamongkonkul P; Simons BW; Wang SS; Gong X; Yu T; Boyle MP; Suk JS; Hanes J
    Sci Adv; 2017 Apr; 3(4):e1601556. PubMed ID: 28435870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ex vivo characterization of particle transport in mucus secretions coating freshly excised mucosal tissues.
    Ensign LM; Henning A; Schneider CS; Maisel K; Wang YY; Porosoff MD; Cone R; Hanes J
    Mol Pharm; 2013 Jun; 10(6):2176-82. PubMed ID: 23617606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues.
    Lai SK; Wang YY; Hanes J
    Adv Drug Deliv Rev; 2009 Feb; 61(2):158-71. PubMed ID: 19133304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avoiding a Sticky Situation: Bypassing the Mucus Barrier for Improved Local Drug Delivery.
    Zierden HC; Josyula A; Shapiro RL; Hsueh HT; Hanes J; Ensign LM
    Trends Mol Med; 2021 May; 27(5):436-450. PubMed ID: 33414070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced pulmonary delivery of fluticasone propionate in rodents by mucus-penetrating nanoparticles.
    Popov A; Schopf L; Bourassa J; Chen H
    Int J Pharm; 2016 Apr; 502(1-2):188-97. PubMed ID: 26902722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles.
    García-Díaz M; Birch D; Wan F; Nielsen HM
    Adv Drug Deliv Rev; 2018 Jan; 124():107-124. PubMed ID: 29117511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus.
    Ensign LM; Tang BC; Wang YY; Tse TA; Hoen T; Cone R; Hanes J
    Sci Transl Med; 2012 Jun; 4(138):138ra79. PubMed ID: 22700955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting mucus barrier in respiratory diseases by chemically modified advanced delivery systems.
    Prasher P; Sharma M; Singh SK; Gulati M; Jha NK; Gupta PK; Gupta G; Chellappan DK; Zacconi F; de Jesus Andreoli Pinto T; Chan Y; Liu G; Paudel KR; Hansbro PM; George Oliver BG; Dua K
    Chem Biol Interact; 2022 Sep; 365():110048. PubMed ID: 35932910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.