These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32667304)

  • 1. Experimental demonstration of mid-IR absorption enhancement in single layer CVD graphene.
    Nematpour A; Lisi N; Chierchia R; Grilli ML
    Opt Lett; 2020 Jul; 45(14):3861-3864. PubMed ID: 32667304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental near infrared absorption enhancement of graphene layers in an optical resonant cavity.
    Nematpour A; Lisi N; Piegari A; Lancellotti L; Hu G; Grilli ML
    Nanotechnology; 2019 Nov; 30(44):445201. PubMed ID: 31341097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards Perfect Absorption of Single Layer CVD Graphene in an Optical Resonant Cavity: Challenges and Experimental Achievements.
    Nematpour A; Grilli ML; Lancellotti L; Lisi N
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer matrix optimization of a one-dimensional photonic crystal cavity for enhanced absorption of monolayer graphene.
    Sarkar S; Padhy A; Nayak C
    Appl Opt; 2022 Oct; 61(29):8613-8623. PubMed ID: 36255993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically tunable infrared filter based on the liquid crystal Fabry-Perot structure for spectral imaging detection.
    Zhang H; Muhammmad A; Luo J; Tong Q; Lei Y; Zhang X; Sang H; Xie C
    Appl Opt; 2014 Sep; 53(25):5632-9. PubMed ID: 25321356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector.
    Zaugg CA; Sun Z; Wittwer VJ; Popa D; Milana S; Kulmala TS; Sundaram RS; Mangold M; Sieber OD; Golling M; Lee Y; Ahn JH; Ferrari AC; Keller U
    Opt Express; 2013 Dec; 21(25):31548-59. PubMed ID: 24514728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of optical absorption enhancement of plasmonic configuration by graphene on LiNbO
    Liu K; Lu F; Xu Y; Ma C
    Nanotechnology; 2021 Nov; 33(4):. PubMed ID: 34649234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabry-PĂ©rot modes associated with hyperbolic-like dispersion in dielectric photonic crystals and demonstration of a bending angle sensor at microwave frequencies.
    Darthy RR; Venkateswaran C; Subramanian V; Ouyang Z; Yogesh N
    Sci Rep; 2020 Jul; 10(1):11117. PubMed ID: 32632230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-multiband absorption enhancement of graphene in a metal-dielectric-graphene sandwich structure covering terahertz to mid-infrared regime.
    Wang Z; Hou Y
    Opt Express; 2017 Aug; 25(16):19185-19194. PubMed ID: 29041112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient heat dissipation of photonic crystal microcavity by monolayer graphene.
    Shih MH; Li LJ; Yang YC; Chou HY; Lin CT; Su CY
    ACS Nano; 2013 Dec; 7(12):10818-24. PubMed ID: 24224797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Color Contrast of Single-Layer Graphene under White Light Illumination Induced by Broadband Photon Management.
    Yu X; Fu S; Song Y; Wang H; Wang X; Kong J; Liu J
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3827-3835. PubMed ID: 31875675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water.
    Mahigir A; Chang TW; Behnam A; Liu GL; Gartia MR; Veronis G
    Sci Rep; 2017 Oct; 7(1):14044. PubMed ID: 29070864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of a Multi-Layer Absorber Exhibiting the Broadband and High Absorptivity in Red Light and Near-Infrared Region.
    Peng G; Li WZ; Tseng LC; Yang CF
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding and Fracture of Single-Crystal Graphene Grown on a Cu(111) Foil.
    Luo D; Choe M; Bizao RA; Wang M; Su H; Huang M; Jin S; Li Y; Kim M; Pugno NM; Ren B; Lee Z; Ruoff RS
    Adv Mater; 2022 Apr; 34(15):e2110509. PubMed ID: 35134267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating the optical bistability at terahertz frequency in the Fabry-Perot cavity with graphene.
    Jiang L; Guo J; Wu L; Dai X; Xiang Y
    Opt Express; 2015 Nov; 23(24):31181-91. PubMed ID: 26698747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial Pressure Assisted Growth of Single-Layer Graphene Grown by Low-Pressure Chemical Vapor Deposition: Implications for High-Performance Graphene FET Devices.
    Sharma I; Papanai GS; Paul SJ; Gupta BK
    ACS Omega; 2020 Sep; 5(35):22109-22118. PubMed ID: 32923769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryogenic mid-wave infrared hyperspectral Fabry-Perot filter based on a tensile-strained single-layer subwavelength grating mirror.
    Mao H; Dong X; Liu Y; Silva D; Faraone L
    Opt Express; 2022 Nov; 30(24):44071-44084. PubMed ID: 36523090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient narrow-band absorption of a graphene-based Fabry-Perot structure at telecommunication wavelengths.
    Zhou K; Cheng Q; Song J; Lu L; Luo Z
    Opt Lett; 2019 Jul; 44(14):3430-3433. PubMed ID: 31305540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of quarter-wave-stack dielectric mirrors used in a thin fabry-perot filter.
    Garmire E
    Appl Opt; 2003 Sep; 42(27):5442-9. PubMed ID: 14526831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.