These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Micro particle launcher/cleaner based on optical trapping technology. Liu Z; Liang P; Zhang Y; Zhang Y; Zhao E; Yang J; Yuan L Opt Express; 2015 Apr; 23(7):8650-8. PubMed ID: 25968703 [TBL] [Abstract][Full Text] [Related]
25. Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers. Baresch D; Thomas JL; Marchiano R Phys Rev Lett; 2016 Jan; 116(2):024301. PubMed ID: 26824541 [TBL] [Abstract][Full Text] [Related]
26. Optical tweezers for the micromanipulation of plant cytoplasm and organelles. Hawes C; Osterrieder A; Sparkes IA; Ketelaar T Curr Opin Plant Biol; 2010 Dec; 13(6):731-5. PubMed ID: 21093352 [TBL] [Abstract][Full Text] [Related]
27. Optical tweezing using tunable optical lattices along a few-mode silicon waveguide. Pin C; Jager JB; Tardif M; Picard E; Hadji E; de Fornel F; Cluzel B Lab Chip; 2018 Jun; 18(12):1750-1757. PubMed ID: 29774333 [TBL] [Abstract][Full Text] [Related]
28. Regulating trapping energy for multi-object manipulation by random phase encoding. Xu T; Wu S; Jiang Z; Wu X; Zhang Q Opt Lett; 2020 Apr; 45(7):2002-2005. PubMed ID: 32236053 [TBL] [Abstract][Full Text] [Related]
29. Optical trap for both transparent and absorbing particles in air using a single shaped laser beam. Redding B; Pan YL Opt Lett; 2015 Jun; 40(12):2798-801. PubMed ID: 26076265 [TBL] [Abstract][Full Text] [Related]
31. Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber. Ortega-Mendoza JG; Chávez F; Zaca-Morán P; Felipe C; Pérez-Sánchez GF; Beltran-Pérez G; Goiz O; Ramos-Garcia R Opt Express; 2013 Mar; 21(5):6509-18. PubMed ID: 23482221 [TBL] [Abstract][Full Text] [Related]
32. Effect of thermal lensing and the micrometric degraded regions on the catastrophic optical damage process of high-power laser diodes. Pura JL; Souto J; Jiménez J Opt Lett; 2020 Apr; 45(7):1667-1670. PubMed ID: 32235969 [TBL] [Abstract][Full Text] [Related]
33. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Ashkin A Methods Cell Biol; 1998; 55():1-27. PubMed ID: 9352508 [TBL] [Abstract][Full Text] [Related]
34. Measurement of the trapping efficiency of an elliptical optical trap with rigid and elastic objects. Kauppila A; Kinnunen M; Karmenyan A; Myllylä R Appl Opt; 2012 Aug; 51(23):5705-12. PubMed ID: 22885584 [TBL] [Abstract][Full Text] [Related]
35. Optical levitation and manipulation of stuck particles with pulsed optical tweezers. Ambardekar AA; Li YQ Opt Lett; 2005 Jul; 30(14):1797-9. PubMed ID: 16092349 [TBL] [Abstract][Full Text] [Related]
36. Optical tweezing and binding at high irradiation powers on black-Si. Shoji T; Mototsuji A; Balčytis A; Linklater D; Juodkazis S; Tsuboi Y Sci Rep; 2017 Sep; 7(1):12298. PubMed ID: 28951618 [TBL] [Abstract][Full Text] [Related]
37. Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles. Fedoruk M; Meixner M; Carretero-Palacios S; Lohmüller T; Feldmann J ACS Nano; 2013 Sep; 7(9):7648-53. PubMed ID: 23941522 [TBL] [Abstract][Full Text] [Related]
38. Single Particle Differentiation through 2D Optical Fiber Trapping and Back-Scattered Signal Statistical Analysis: An Exploratory Approach. Paiva JS; Ribeiro RSR; Cunha JPS; Rosa CC; Jorge PAS Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495502 [TBL] [Abstract][Full Text] [Related]
39. Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps. Schut TC; Hesselink G; de Grooth BG; Greve J Cytometry; 1991; 12(6):479-85. PubMed ID: 1764972 [TBL] [Abstract][Full Text] [Related]
40. Subwavelength optical trapping with a fiber-based surface plasmonic lens. Liu Y; Stief F; Yu M Opt Lett; 2013 Mar; 38(5):721-3. PubMed ID: 23455277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]