These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32667330)

  • 1. Fundamental limits of laser power stabilization via a radiation pressure transfer scheme.
    Trad Nery M; Danilishin SL; Venneberg JR; Willke B
    Opt Lett; 2020 Jul; 45(14):3969-3972. PubMed ID: 32667330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser power stabilization via radiation pressure.
    Trad Nery M; Venneberg JR; Aggarwal N; Cole GD; Corbitt T; Cripe J; Lanza R; Willke B
    Opt Lett; 2021 Apr; 46(8):1946-1949. PubMed ID: 33857112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser Power Stabilization beyond the Shot Noise Limit Using Squeezed Light.
    Vahlbruch H; Wilken D; Mehmet M; Willke B
    Phys Rev Lett; 2018 Oct; 121(17):173601. PubMed ID: 30411965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser power stabilization using optical ac coupling and its quantum and technical limits.
    Kwee P; Willke B; Danzmann K
    Appl Opt; 2009 Oct; 48(28):5423-31. PubMed ID: 19798384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive laser power stabilization via an optical spring.
    Cullen T; Aronson S; Pagano R; Trad Nery M; Cain H; Cripe J; Cole GD; Sharifi S; Aggarwal N; Willke B; Corbitt T
    Opt Lett; 2022 Jun; 47(11):2746-2749. PubMed ID: 35648920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of classic and quantum radiation pressure noise by electro-optic feedback.
    Buchler BC; Gray MB; Shaddock DA; Ralph TC; McClelland DE
    Opt Lett; 1999 Feb; 24(4):259-61. PubMed ID: 18071473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shot-noise-limited laser power stabilization for the AEI 10  m Prototype interferometer.
    Junker J; Oppermann P; Willke B
    Opt Lett; 2017 Feb; 42(4):755-758. PubMed ID: 28198864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors.
    Grote H; Weinert M; Adhikari RX; Affeldt C; Kringel V; Leong J; Lough J; Lück H; Schreiber E; Strain KA; Vahlbruch H; Wittel H
    Opt Express; 2016 Sep; 24(18):20107-18. PubMed ID: 27607619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gravitational wave detection using laser interferometry beyond the standard quantum limit.
    Heurs M
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum loss sensing with two-mode squeezed vacuum state under noisy and lossy environment.
    Park SI; Noh C; Lee C
    Sci Rep; 2023 Apr; 13(1):5936. PubMed ID: 37045874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object.
    Lecocq F; Clark JB; Simmonds RW; Aumentado J; Teufel JD
    Phys Rev X; 2015; 5(4):041037. PubMed ID: 27057422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of stably bright squeezed light with the quantum noise reduction of 12.6  dB by mutually compensating the phase fluctuations.
    Yang W; Shi S; Wang Y; Ma W; Zheng Y; Peng K
    Opt Lett; 2017 Nov; 42(21):4553-4556. PubMed ID: 29088211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization improvement of the squeezed optical fields using a high signal-to-noise ratio bootstrap photodetector.
    Wang X; Wu L; Liang S; Cheng J; Liu Y; Zhou Y; Qin J; Yan Z; Jia X
    Opt Express; 2022 Dec; 30(26):47826-47835. PubMed ID: 36558701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Squeezed vacuum phase control at 2  μm.
    Yap MJ; Gould DW; McRae TG; Altin PA; Kijbunchoo N; Mansell GL; Ward RL; Shaddock DA; Slagmolen BJJ; McClelland DE
    Opt Lett; 2019 Nov; 44(21):5386-5389. PubMed ID: 31675014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force measurement in squeezed dissipative optomechanics in the presence of laser phase noise.
    Gu WJ; Wang YY; Yi Z; Yang WX; Sun LH
    Opt Express; 2020 Apr; 28(8):12460-12474. PubMed ID: 32403743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-noise, transformer-coupled resonant photodetector for squeezed state generation.
    Chen C; Shi S; Zheng Y
    Rev Sci Instrum; 2017 Oct; 88(10):103101. PubMed ID: 29092525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction and possible elimination of coating thermal noise using a rigidly controlled cavity with a quantum-nondemolition technique.
    Somiya K
    Phys Rev Lett; 2009 Jun; 102(23):230801. PubMed ID: 19658917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed squeezed-light measurement: a new technique.
    Aytür O; Kumar P
    Opt Lett; 1990 Apr; 15(7):390-2. PubMed ID: 19767953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scattering-lens based quantum imaging beyond shot noise.
    Li D; Yao Y
    Sci Rep; 2021 Apr; 11(1):7785. PubMed ID: 33833248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrahigh-frequency stabilization of a diode-pumped Nd:YAG laser with a high-power-acceptance photodetector.
    Uehara N; Ueda K
    Opt Lett; 1994 May; 19(10):728-30. PubMed ID: 19844426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.