These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32667336)

  • 1. On the equivalence of speckle contrast-based and diffuse correlation spectroscopy methods in measuring in vivo blood flow.
    Murali K; Nandakumaran AK; Varma HM
    Opt Lett; 2020 Jul; 45(14):3993-3996. PubMed ID: 32667336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep tissue flowmetry based on diffuse speckle contrast analysis.
    Bi R; Dong J; Lee K
    Opt Lett; 2013 May; 38(9):1401-3. PubMed ID: 23632498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical methods for blood perfusion measurement--theoretical comparison among four different modalities.
    Bi R; Dong J; Poh CL; Lee K
    J Opt Soc Am A Opt Image Sci Vis; 2015 May; 32(5):860-6. PubMed ID: 26366910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast pulsatile blood flow measurement in deep tissue through a multimode detection fiber.
    Bi R; Du Y; Singh G; Ho CJ; Zhang S; Attia ABE; Li X; Olivo M
    J Biomed Opt; 2020 May; 25(5):1-10. PubMed ID: 32406214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact and cost-effective laser-powered speckle contrast optical spectroscopy fiber-free device for measuring cerebral blood flow.
    Huang YX; Mahler S; Dickson M; Abedi A; Tyszka JM; Lo YT; Russin J; Liu C; Yang C
    J Biomed Opt; 2024 Jun; 29(6):067001. PubMed ID: 38826808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speckle contrast diffuse correlation tomography of complex turbid medium flow.
    Huang C; Irwin D; Lin Y; Shang Y; He L; Kong W; Luo J; Yu G
    Med Phys; 2015 Jul; 42(7):4000-6. PubMed ID: 26133600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood flow estimation via numerical integration of temporal autocorrelation function in diffuse correlation spectroscopy.
    Seong M; Oh Y; Lee K; Kim JG
    Comput Methods Programs Biomed; 2022 Jul; 222():106933. PubMed ID: 35728393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of the diffuse correlation spectroscopy data-type from speckle contrast measurements: towards low-cost, deep-tissue blood flow measurements.
    Murali K; Nandakumaran AK; Durduran T; Varma HM
    Biomed Opt Express; 2019 Oct; 10(10):5395-5413. PubMed ID: 31646054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-cost compact diffuse speckle contrast flowmeter using small laser diode and bare charge-coupled-device.
    Huang C; Seong M; Morgan JP; Mazdeyasna S; Kim JG; Hastings JT; Yu G
    J Biomed Opt; 2016 Aug; 21(8):80501. PubMed ID: 27533437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative model of diffuse speckle contrast analysis for flow measurement.
    Liu J; Zhang H; Lu J; Ni X; Shen Z
    J Biomed Opt; 2017 Jul; 22(7):76016. PubMed ID: 28742921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluctuations of temporal contrast in laser speckle imaging of blood flow.
    Hong J; Wang Y; Chen X; Lu J; Li P
    Opt Lett; 2018 Nov; 43(21):5214-5217. PubMed ID: 30382969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-speckle diffuse correlation spectroscopy to measure cerebral blood flow.
    Murali K; Varma HM
    Biomed Opt Express; 2020 Nov; 11(11):6699-6709. PubMed ID: 33282518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid multiexposure in vivo brain imaging system using vertical cavity surface emitting lasers as a light source.
    Atchia Y; Levy H; Dufour S; Levi O
    Appl Opt; 2013 Mar; 52(7):C64-71. PubMed ID: 23458819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Portable laser speckle perfusion imaging system based on digital signal processor.
    Tang X; Feng N; Sun X; Li P; Luo Q
    Rev Sci Instrum; 2010 Dec; 81(12):125110. PubMed ID: 21198054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choosing a laser for laser speckle contrast imaging.
    Postnov DD; Cheng X; Erdener SE; Boas DA
    Sci Rep; 2019 Feb; 9(1):2542. PubMed ID: 30796288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion.
    Lv W; Wang Y; Chen X; Fu X; Lu J; Li P
    J Biophotonics; 2019 Jan; 12(1):e201800100. PubMed ID: 29952071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Handheld, point-of-care laser speckle imaging.
    Farraro R; Fathi O; Choi B
    J Biomed Opt; 2016 Sep; 21(9):94001. PubMed ID: 27579578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser speckle imaging of flowing blood: A numerical study.
    van As K; Boterman J; Kleijn CR; Kenjeres S; Bhattacharya N
    Phys Rev E; 2019 Sep; 100(3-1):033317. PubMed ID: 31639980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue.
    Valdes CP; Varma HM; Kristoffersen AK; Dragojevic T; Culver JP; Durduran T
    Biomed Opt Express; 2014 Aug; 5(8):2769-84. PubMed ID: 25136500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser speckle contrast imaging: theoretical and practical limitations.
    Briers D; Duncan DD; Hirst E; Kirkpatrick SJ; Larsson M; Steenbergen W; Stromberg T; Thompson OB
    J Biomed Opt; 2013 Jun; 18(6):066018. PubMed ID: 23807512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.