BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32667685)

  • 1. Novel spiking methods developed for anion exchange chromatography operating in a continuous process.
    Li Y; Chang A; Beattie D; Remington KM
    Biotechnol Bioeng; 2020 Nov; 117(11):3379-3389. PubMed ID: 32667685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrospective Evaluation of Cycled Resin in Viral Clearance Studies-A Multiple Company Collaboration.
    Mattila J; Curtis S; Webb-Vargas Y; Wilson E; Galperina O; Roush D; Tobler S; Stanley B; Clark M; Weaver J; Pike J; Yu D; Li X; Flicker A; Kindermann J; Schuelke N; Whitcombe R; Bennett L
    PDA J Pharm Sci Technol; 2019; 73(5):470-486. PubMed ID: 31101706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the combination of single-pass tangential flow filtration and anion exchange chromatography for intensified mAb polishing.
    Elich T; Goodrich E; Lutz H; Mehta U
    Biotechnol Prog; 2019 Sep; 35(5):e2862. PubMed ID: 31168950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proceedings of the 2017 Viral Clearance Symposium, Session 6: Ensuring Viral Safety in Continuous Processing.
    Johnson SA; Roush D
    PDA J Pharm Sci Technol; 2018; 72(5):516-524. PubMed ID: 30030352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adapting virus filtration to enable intensified and continuous monoclonal antibody processing.
    Bohonak DM; Mehta U; Weiss ER; Voyta G
    Biotechnol Prog; 2021 Mar; 37(2):e3088. PubMed ID: 33016523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation exchange chromatography performed in overloaded mode is effective in removing viruses during the manufacturing of monoclonal antibodies.
    Masuda Y; Tsuda M; Hashikawa-Muto C; Takahashi Y; Nonaka K; Wakamatsu K
    Biotechnol Prog; 2019 Sep; 35(5):e2858. PubMed ID: 31148380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of virus-antibody interactions on viral clearance in anion exchange chromatography.
    Hung J; Lam SF; Tan Z; Choy D; Chennamsetty N; Lewandowski A; Qi W; Lynch M; Ghose S; Li ZJ
    J Chromatogr A; 2020 Dec; 1633():461635. PubMed ID: 33128974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer of a three step mAb chromatography process from batch to continuous: Optimizing productivity to minimize consumable requirements.
    Gjoka X; Gantier R; Schofield M
    J Biotechnol; 2017 Jan; 242():11-18. PubMed ID: 27939321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proceedings of the 2017 Viral Clearance Symposium, Session 2.2: DSP Unit Operations-Purification Unit Operations.
    Roush D; Kreil TR
    PDA J Pharm Sci Technol; 2018; 72(5):479-487. PubMed ID: 30030354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viral clearance by flow-through mode ion exchange columns and membrane adsorbers.
    Miesegaes GR; Lute SC; Read EK; Brorson KA
    Biotechnol Prog; 2014; 30(1):124-31. PubMed ID: 24167103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a modular virus clearance package for anion exchange chromatography operated in weak partitioning mode.
    Iskra T; Sacramo A; Gallo C; Godavarti R; Chen S; Lute S; Brorson K
    Biotechnol Prog; 2015; 31(3):750-7. PubMed ID: 25826186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tandem laboratory scale protein purification process using Protein A affinity and anion exchange chromatography operated in a weak partitioning mode.
    Shamashkin M; Godavarti R; Iskra T; Coffman J
    Biotechnol Bioeng; 2013 Oct; 110(10):2655-63. PubMed ID: 23633385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation and optimization of viral clearance in a downstream continuous chromatography setting.
    Chiang MJ; Pagkaliwangan M; Lute S; Bolton G; Brorson K; Schofield M
    Biotechnol Bioeng; 2019 Sep; 116(9):2292-2302. PubMed ID: 31112283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viral removal by column chromatography in downstream processing of monoclonal antibodies.
    Li Y
    Protein Expr Purif; 2022 Oct; 198():106131. PubMed ID: 35700957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viral clearance capacity by continuous Protein A chromatography step using Sequential MultiColumn Chromatography.
    Goussen C; Goldstein L; Brèque C; You B; Boyer S; Bataille D; Burlot L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 May; 1145():122056. PubMed ID: 32315973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monoclonal antibody capture and viral clearance by cation exchange chromatography.
    Miesegaes GR; Lute S; Strauss DM; Read EK; Venkiteshwaran A; Kreuzman A; Shah R; Shamlou P; Chen D; Brorson K
    Biotechnol Bioeng; 2012 Aug; 109(8):2048-58. PubMed ID: 22488719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of viral clearance unit operations for monoclonal antibodies.
    Miesegaes G; Lute S; Brorson K
    Biotechnol Bioeng; 2010 Jun; 106(2):238-46. PubMed ID: 20073086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for developing design spaces for viral clearance by anion exchange chromatography during monoclonal antibody production.
    Strauss DM; Cano T; Cai N; Delucchi H; Plancarte M; Coleman D; Blank GS; Chen Q; Yang B
    Biotechnol Prog; 2010; 26(3):750-5. PubMed ID: 20306523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated system for temperature-controlled fast protein liquid chromatography. III. Continuous downstream processing of monoclonal antibodies.
    Ketterer B; Moore-Kelly C; Thomas ORT; Franzreb M
    J Chromatogr A; 2020 Jan; 1609():460429. PubMed ID: 31431354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Direct Approach for Process Development Using Single Column Experiments Results in Predictable Streamlined Multi-Column Chromatography Bioprocesses.
    Utturkar A; Gillette K; Sun CY; Pagkaliwangan M; Quesenberry R; Schofield M
    Biotechnol J; 2019 Apr; 14(4):. PubMed ID: 30288940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.