These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 32667876)
1. Analysis of the diversity of the glycoside hydrolase family 130 in mammal gut microbiomes reveals a novel mannoside-phosphorylase function. Li A; Laville E; Tarquis L; Lombard V; Ropartz D; Terrapon N; Henrissat B; Guieysse D; Esque J; Durand J; Morgavi DP; Potocki-Veronese G Microb Genom; 2020 Oct; 6(10):. PubMed ID: 32667876 [TBL] [Abstract][Full Text] [Related]
2. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies. Ye Y; Saburi W; Odaka R; Kato K; Sakurai N; Komoda K; Nishimoto M; Kitaoka M; Mori H; Yao M FEBS Lett; 2016 Mar; 590(6):828-37. PubMed ID: 26913570 [TBL] [Abstract][Full Text] [Related]
3. The GH130 Family of Mannoside Phosphorylases Contains Glycoside Hydrolases That Target β-1,2-Mannosidic Linkages in Candida Mannan. Cuskin F; Baslé A; Ladevèze S; Day AM; Gilbert HJ; Davies GJ; Potocki-Véronèse G; Lowe EC J Biol Chem; 2015 Oct; 290(41):25023-33. PubMed ID: 26286752 [TBL] [Abstract][Full Text] [Related]
4. Discovery of two β-1,2-mannoside phosphorylases showing different chain-length specificities from Thermoanaerobacter sp. X-514. Chiku K; Nihira T; Suzuki E; Nishimoto M; Kitaoka M; Ohtsubo K; Nakai H PLoS One; 2014; 9(12):e114882. PubMed ID: 25500577 [TBL] [Abstract][Full Text] [Related]
5. Role of glycoside phosphorylases in mannose foraging by human gut bacteria. Ladevèze S; Tarquis L; Cecchini DA; Bercovici J; André I; Topham CM; Morel S; Laville E; Monsan P; Lombard V; Henrissat B; Potocki-Véronèse G J Biol Chem; 2013 Nov; 288(45):32370-32383. PubMed ID: 24043624 [TBL] [Abstract][Full Text] [Related]
6. Diversity of phosphorylases in glycoside hydrolase families. Kitaoka M Appl Microbiol Biotechnol; 2015 Oct; 99(20):8377-90. PubMed ID: 26293338 [TBL] [Abstract][Full Text] [Related]
7. Structural bases for N-glycan processing by mannoside phosphorylase. Ladevèze S; Cioci G; Roblin P; Mourey L; Tranier S; Potocki-Véronèse G Acta Crystallogr D Biol Crystallogr; 2015 Jun; 71(Pt 6):1335-46. PubMed ID: 26057673 [TBL] [Abstract][Full Text] [Related]
8. Identification of Kuhaudomlarp S; Patron NJ; Henrissat B; Rejzek M; Saalbach G; Field RA J Biol Chem; 2018 Feb; 293(8):2865-2876. PubMed ID: 29317507 [TBL] [Abstract][Full Text] [Related]
9. Exploring the sequence diversity in glycoside hydrolase family 13_18 reveals a novel glucosylglycerol phosphorylase. Franceus J; Decuyper L; D'hooghe M; Desmet T Appl Microbiol Biotechnol; 2018 Apr; 102(7):3183-3191. PubMed ID: 29470619 [TBL] [Abstract][Full Text] [Related]
10. Discovery and biochemical characterization of a mannose phosphorylase catalyzing the synthesis of novel β-1,3-mannosides. Awad FN; Laborda P; Wang M; Lu AM; Li Q; Cai ZP; Liu L; Voglmeir J Biochim Biophys Acta Gen Subj; 2017 Dec; 1861(12):3231-3237. PubMed ID: 28935603 [TBL] [Abstract][Full Text] [Related]
11. Functions, structures, and applications of cellobiose 2-epimerase and glycoside hydrolase family 130 mannoside phosphorylases. Saburi W Biosci Biotechnol Biochem; 2016 Jul; 80(7):1294-305. PubMed ID: 27031293 [TBL] [Abstract][Full Text] [Related]
12. Characterization and crystal structure determination of β-1,2-mannobiose phosphorylase from Listeria innocua. Tsuda T; Nihira T; Chiku K; Suzuki E; Arakawa T; Nishimoto M; Kitaoka M; Nakai H; Fushinobu S FEBS Lett; 2015 Dec; 589(24 Pt B):3816-21. PubMed ID: 26632508 [TBL] [Abstract][Full Text] [Related]
13. Functional characterization of a novel GH94 glycoside phosphorylase, 3-O-β-d-glucopyranosyl β-d-glucuronide phosphorylase, and implication of the metabolic pathway of acidic carbohydrates in Paenibacillus borealis. Isono N; Mizutani E; Hayashida H; Katsuzaki H; Saburi W Biochem Biophys Res Commun; 2022 Oct; 625():60-65. PubMed ID: 35947916 [TBL] [Abstract][Full Text] [Related]
14. Unraveling the subtleties of β-(1→3)-glucan phosphorylase specificity in the GH94, GH149, and GH161 glycoside hydrolase families. Kuhaudomlarp S; Pergolizzi G; Patron NJ; Henrissat B; Field RA J Biol Chem; 2019 Apr; 294(16):6483-6493. PubMed ID: 30819804 [TBL] [Abstract][Full Text] [Related]
16. The structure of a GH149 β-(1 → 3) glucan phosphorylase reveals a new surface oligosaccharide binding site and additional domains that are absent in the disaccharide-specific GH94 glucose-β-(1 → 3)-glucose (laminaribiose) phosphorylase. Kuhaudomlarp S; Stevenson CEM; Lawson DM; Field RA Proteins; 2019 Oct; 87(10):885-892. PubMed ID: 31134667 [TBL] [Abstract][Full Text] [Related]
17. Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library. Macdonald SS; Patel A; Larmour VLC; Morgan-Lang C; Hallam SJ; Mark BL; Withers SG J Biol Chem; 2018 Mar; 293(9):3451-3467. PubMed ID: 29317495 [TBL] [Abstract][Full Text] [Related]
18. Exploration of GH94 Sequence Space for Enzyme Discovery Reveals a Novel Glucosylgalactose Phosphorylase Specificity. De Doncker M; De Graeve C; Franceus J; Beerens K; Křen V; Pelantová H; Vercauteren R; Desmet T Chembiochem; 2021 Dec; 22(23):3319-3325. PubMed ID: 34541742 [TBL] [Abstract][Full Text] [Related]
19. The many functions of carbohydrate-active enzymes in family GH65: diversity and application. De Beul E; Franceus J; Desmet T Appl Microbiol Biotechnol; 2024 Sep; 108(1):476. PubMed ID: 39348028 [TBL] [Abstract][Full Text] [Related]
20. The structure of a glycoside hydrolase 29 family member from a rumen bacterium reveals unique, dual carbohydrate-binding domains. Summers EL; Moon CD; Atua R; Arcus VL Acta Crystallogr F Struct Biol Commun; 2016 Oct; 72(Pt 10):750-761. PubMed ID: 27710940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]