BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32668155)

  • 1. Chemical Dynamics Simulations of Curtius Reaction of Acetyl- and Fluorocarbonyl Azides.
    Godara S; Radhakrishnan A; Paranjothy M
    J Phys Chem A; 2020 Aug; 124(32):6438-6444. PubMed ID: 32668155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinduced Curtius rearrangements of fluorocarbonyl azide, FC(O)N
    Xie BB; Cui CX; Fang WH; Cui G
    Phys Chem Chem Phys; 2018 Jul; 20(29):19363-19372. PubMed ID: 29998234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally persistent carbonyl nitrene: FC(O)N.
    Sun H; Zhu B; Wu Z; Zeng X; Beckers H; Jenks WS
    J Org Chem; 2015 Feb; 80(3):2006-9. PubMed ID: 25584417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Curtius rearrangement of cyclopropyl and cyclopropenoyl azides. A combined theoretical and experimental mechanistic study.
    Tarwade V; Dmitrenko O; Bach RD; Fox JM
    J Org Chem; 2008 Nov; 73(21):8189-97. PubMed ID: 18826325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting Photolytic and Thermal Decomposition of Phenyl Azidoformate: The Curtius Rearrangement Versus Intramolecular C-H Amination.
    Wan H; Xu J; Liu Q; Li H; Lu Y; Abe M; Zeng X
    J Phys Chem A; 2017 Nov; 121(45):8604-8613. PubMed ID: 29069546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive theoretical analysis of Curtius rearrangement of syn-syn and syn-anti conformers of oxalyl diazide.
    Taherian R; Chahkandi B; Zahedi E
    J Mol Graph Model; 2021 Dec; 109():108012. PubMed ID: 34478927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curtius-Type Rearrangement of Sulfinyl Azides: A Matrix Isolation and Computational Study.
    Wu Z; Zeng X
    J Phys Chem A; 2022 Jul; 126(27):4367-4375. PubMed ID: 35771242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decomposition of Sulfonyl Azide Isocyanate and Sulfonyl Diazide: The Oxygen-Shifted Curtius Rearrangement via Sulfonyl Nitrenes.
    Dong X; Deng G; Xu J; Li H; Zeng X
    J Phys Chem A; 2018 Nov; 122(43):8511-8519. PubMed ID: 30351095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-Fluoro-2
    Zhu B; Zeng X
    J Phys Chem A; 2023 Dec; 127(50):10591-10599. PubMed ID: 38063135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Understanding the Decomposition of Carbonyl Diazide (N3)2C═O and Formation of Diazirinone cycl-N2CO: Experiment and Computations.
    Li H; Li D; Zeng X; Liu K; Beckers H; Schaefer HF; Esselman BJ; McMahon RJ
    J Phys Chem A; 2015 Aug; 119(33):8903-11. PubMed ID: 26218716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photolysis of Carbonyl Diisocyanate: Generation of Isocyanatocarbonyl Nitrene and Diazomethanone.
    Liu Q; Li H; Wu Z; Li D; Beckers H; Rauhut G; Zeng X
    Chem Asian J; 2016 Oct; 11(20):2953-2959. PubMed ID: 27558908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The missing link: triplet fluorocarbonyl nitrene FC(O)N.
    Zeng X; Beckers H; Willner H; Grote D; Sander W
    Chemistry; 2011 Mar; 17(14):3977-84. PubMed ID: 21384447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposition of fluorophosphoryl diazide: a joint experimental and theoretical study.
    Li D; Li H; Zhu B; Zeng X; Willner H; Beckers H; Neuhaus P; Grote D; Sander W
    Phys Chem Chem Phys; 2015 Mar; 17(9):6433-9. PubMed ID: 25656843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational composition, molecular structure and decomposition of difluorophosphoryl azide in the gas phase.
    Wu Z; Li H; Zhu B; Zeng X; Hayes SA; Mitzel NW; Beckers H; Berger RJ
    Phys Chem Chem Phys; 2015 Apr; 17(14):8784-91. PubMed ID: 25740559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlorodifluoroacetyl azide, ClF2CC(O)N3: preparation, properties, and decomposition.
    Ramos LA; Zeng X; Ulic SE; Beckers H; Willner H; Della Védova CO
    J Org Chem; 2012 Aug; 77(15):6456-62. PubMed ID: 22800100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of cobalt(II) porphyrin-catalyzed C-H amination with organic azides: radical nature and H-atom abstraction ability of the key cobalt(III)-nitrene intermediates.
    Lyaskovskyy V; Suarez AI; Lu H; Jiang H; Zhang XP; de Bruin B
    J Am Chem Soc; 2011 Aug; 133(31):12264-73. PubMed ID: 21711027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Rearrangement of Sulfamoyl Azides: Reactivity and Mechanistic Study.
    Zou X; Zou J; Yang L; Li G; Lu H
    J Org Chem; 2017 May; 82(9):4677-4688. PubMed ID: 28414236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational study of the Curtius-like rearrangements of phosphoryl, phosphinyl, and phosphinoyl azides and their corresponding nitrenes.
    McCulla RD; Gohar GA; Hadad CM; Platz MS
    J Org Chem; 2007 Dec; 72(25):9426-38. PubMed ID: 17999517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of acetyl- and methoxycarbonylnitrenes by computational methods and a laser flash photolysis study of benzoylnitrene.
    Liu J; Mandel S; Hadad CM; Platz MS
    J Org Chem; 2004 Dec; 69(25):8583-93. PubMed ID: 15575733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic Characterization of Nicotinoyl and Isonicotinoyl Nitrenes and the Photointerconversion of 4-Pyridylnitrene with Diazacycloheptatetraene.
    Liu Q; Qin Y; Lu Y; Wentrup C; Zeng X
    J Phys Chem A; 2019 May; 123(17):3793-3801. PubMed ID: 30978289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.