These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 32668348)
1. Calcium formate assisted catalytic pyrolysis of pine for enhanced production of monocyclic aromatic hydrocarbons over bimetal-modified HZSM-5. Li K; Zhang G; Wang ZX; Hu B; Lu Q Bioresour Technol; 2020 Nov; 315():123805. PubMed ID: 32668348 [TBL] [Abstract][Full Text] [Related]
2. Monocyclic aromatic hydrocarbons production from catalytic cracking of pine wood-derived pyrolytic vapors over Ce-Mo Lu Q; Guo HQ; Zhou MX; Zhang ZX; Cui MS; Zhang YY; Yang YP; Zhang LB Sci Total Environ; 2018 Sep; 634():141-149. PubMed ID: 29627536 [TBL] [Abstract][Full Text] [Related]
3. Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production. Wang S; Li Z; Bai X; Yi W; Fu P Bioresour Technol; 2019 Apr; 278():66-72. PubMed ID: 30682638 [TBL] [Abstract][Full Text] [Related]
4. Effect of alkali-treated HZSM-5 zeolite on the production of aromatic hydrocarbons from microwave assisted catalytic fast pyrolysis (MACFP) of rice husk. Li Z; Zhong Z; Zhang B; Wang W; Seufitelli GVS; Resende FLP Sci Total Environ; 2020 Feb; 703():134605. PubMed ID: 31731164 [TBL] [Abstract][Full Text] [Related]
5. Production of light olefins and monocyclic aromatic hydrocarbons from the pyrolysis of waste plastic straws over high-silica zeolite-based catalysts. Valizadeh B; Valizadeh S; Kim H; Choi YJ; Seo MW; Yoo KS; Lin KA; Hussain M; Park YK Environ Res; 2024 Mar; 245():118076. PubMed ID: 38160977 [TBL] [Abstract][Full Text] [Related]
6. Selective preparation of 1-hydroxy-3,6-dioxabicyclo[3.2.1]octan-2-one by fast pyrolysis of cellulose catalyzed with metal-loaded nitrided HZSM-5. Zhang ZX; Hu B; Li Y; Li K; Lu Q Bioresour Technol; 2020 Aug; 309():123370. PubMed ID: 32311658 [TBL] [Abstract][Full Text] [Related]
7. Production of aromatic hydrocarbons through catalytic pyrolysis of 5-Hydroxymethylfurfural from biomass. Zhao Y; Pan T; Zuo Y; Guo QX; Fu Y Bioresour Technol; 2013 Nov; 147():37-42. PubMed ID: 23994304 [TBL] [Abstract][Full Text] [Related]
8. Li K; Bolatibieke D; Yang SG; Wang B; Nan DH; Lu Q RSC Adv; 2020 Jun; 10(39):23331-23340. PubMed ID: 35520334 [TBL] [Abstract][Full Text] [Related]
9. Catalytic upcycling of post-consumer multilayered plastic packaging wastes for the selective production of monoaromatic hydrocarbons. Pal SK; Prabhudesai VS; Vinu R J Environ Manage; 2024 Feb; 351():119630. PubMed ID: 38043308 [TBL] [Abstract][Full Text] [Related]
10. Catalytic flash pyrolysis of Scenedesmus sp. post-extraction residue using low-cost HZSM-5 catalyst with the perspective to produce renewable aromatic hydrocarbons. Marques JAO; Alves JLF; de Oliveira GP; Melo DMA; de Melo Viana GAC; Braga RM Environ Sci Pollut Res Int; 2024 Mar; 31(12):18785-18796. PubMed ID: 38349495 [TBL] [Abstract][Full Text] [Related]
11. Converting polycarbonate and polystyrene plastic wastes intoaromatic hydrocarbons via catalytic fast co-pyrolysis. Wang J; Jiang J; Wang X; Wang R; Wang K; Pang S; Zhong Z; Sun Y; Ruan R; Ragauskas AJ J Hazard Mater; 2020 Mar; 386():121970. PubMed ID: 31887562 [TBL] [Abstract][Full Text] [Related]
12. Lignin and spent bleaching clay into mono-aromatic hydrocarbons by a cascade dual catalytic pyrolysis system: Critical role of spent bleaching clay. Wan Z; Li Z; Yi W; Zhang A; Li G; Wang S Int J Biol Macromol; 2023 May; 236():123879. PubMed ID: 36870660 [TBL] [Abstract][Full Text] [Related]
13. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Liu S; Xie Q; Zhang B; Cheng Y; Liu Y; Chen P; Ruan R Bioresour Technol; 2016 Mar; 204():164-170. PubMed ID: 26773959 [TBL] [Abstract][Full Text] [Related]
14. Comparison of catalytic effect on upgrading bio-oil derived from co-pyrolysis of water hyacinth and scrap tire over multilamellar MFI nanosheets and HZSM-5. Chen L; Ma X; Tang F; Li Y; Yu Z; Chen X Bioresour Technol; 2020 Sep; 312():123592. PubMed ID: 32531734 [TBL] [Abstract][Full Text] [Related]
15. Catalytic upgrading of penicillin fermentation residue bio-oil by metal-supported HZSM-5. Hong C; Li Y; Si Y; Li Z; Xing Y; Chang X; Zheng Z; Hu J; Zhao X Sci Total Environ; 2021 May; 767():144977. PubMed ID: 33636768 [TBL] [Abstract][Full Text] [Related]
16. Microwave catalytic co-pyrolysis of waste cooking oil and low-density polyethylene to produce monocyclic aromatic hydrocarbons: Effect of different catalysts and pyrolysis parameters. Zeng Y; Wang Y; Liu Y; Dai L; Wu Q; Xia M; Zhang S; Ke L; Zou R; Ruan R Sci Total Environ; 2022 Feb; 809():152182. PubMed ID: 34883177 [TBL] [Abstract][Full Text] [Related]
17. Enhancing hydrocarbon production via ex-situ catalytic co-pyrolysis of biomass and high-density polyethylene: Study of synergistic effect and aromatics selectivity. He T; Zhong S; Liu C; Shujaa A; Zhang B Waste Manag; 2021 Jun; 128():189-199. PubMed ID: 33992999 [TBL] [Abstract][Full Text] [Related]
18. Catalytic fast pyrolysis of enzymatic hydrolysis lignin over Lewis-acid catalyst niobium pentoxide and mechanism study. Li S; Luo Z; Wang W; Sun H; Xie J; Liang X Bioresour Technol; 2020 Nov; 316():123853. PubMed ID: 32731173 [TBL] [Abstract][Full Text] [Related]
19. Pyrolysis behavior of low-density polyethylene over HZSM-5 via rapid infrared heating. Wu Y; Wang K; Wei B; Yang H; Jin L; Hu H Sci Total Environ; 2022 Feb; 806(Pt 3):151287. PubMed ID: 34736756 [TBL] [Abstract][Full Text] [Related]
20. Efficient Conversion of Lignin to Aromatics via Catalytic Fast Pyrolysis over Niobium-Doped HZSM-5. Li Z; Zhang H; Yang D; Hu Z; Wang F; Zhang Z Molecules; 2023 May; 28(10):. PubMed ID: 37241985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]