These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 32668357)
61. The relationship between the length of surface ligand and effects of CdTe quantum dots on the physiological functions of isolated mitochondria. Xiang X; Wu C; Zhang BR; Gao T; Zhao J; Ma L; Jiang FL; Liu Y Chemosphere; 2017 Oct; 184():1108-1116. PubMed ID: 28672691 [TBL] [Abstract][Full Text] [Related]
62. Short-term assessment of cadmium toxicity and uptake from different types of Cd-based Quantum Dots in the model plant Allium cepa L. Modlitbová P; Pořízka P; Novotný K; Drbohlavová J; Chamradová I; Farka Z; Zlámalová-Gargošová H; Romih T; Kaiser J Ecotoxicol Environ Saf; 2018 May; 153():23-31. PubMed ID: 29407734 [TBL] [Abstract][Full Text] [Related]
63. Facile synthesis and photoluminescence of near-infrared-emitting CdTe(x)Se(1-x) and CdTe(x)Se(1-x)/Cd(y)Zn(-1-y)S quantum dots. Zhang R; Wang J; Yang P J Nanosci Nanotechnol; 2014 Mar; 14(3):2539-45. PubMed ID: 24745260 [TBL] [Abstract][Full Text] [Related]
64. UV-enhanced cytotoxicity of CdTe quantum dots in PANC-1 cells depend on their size distribution and surface modification. Chang S; Chen D; Kang B; Dai Y J Nanosci Nanotechnol; 2013 Feb; 13(2):751-4. PubMed ID: 23646509 [TBL] [Abstract][Full Text] [Related]
65. Microarray analysis of the Escherichia coli response to CdTe-GSH Quantum Dots: understanding the bacterial toxicity of semiconductor nanoparticles. Monrás JP; Collao B; Molina-Quiroz RC; Pradenas GA; Saona LA; Durán-Toro V; Ordenes-Aenishanslins N; Venegas FA; Loyola DE; Bravo D; Calderón PF; Calderón IL; Vásquez CC; Chasteen TG; Lopez DA; Pérez-Donoso JM BMC Genomics; 2014 Dec; 15(1):1099. PubMed ID: 25496196 [TBL] [Abstract][Full Text] [Related]
66. Aqueous synthesis of highly luminescent surface Mn2+-doped CdTe quantum dots as a potential multimodal agent. Zhang F; He F; He XW; Li WY; Zhang YK Luminescence; 2014 Dec; 29(8):1059-65. PubMed ID: 24788557 [TBL] [Abstract][Full Text] [Related]
67. One-pot aqueous synthesis of gadolinium doped CdTe quantum dots with dual imaging modalities. Jiang C; Shen Z; Luo C; Lin H; Huang R; Wang Y; Peng H Talanta; 2016 Aug; 155():14-20. PubMed ID: 27216651 [TBL] [Abstract][Full Text] [Related]
68. Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: Synthesis, characterization, biological potentials and comparison study. Moradi Alvand Z; Rajabi HR; Mirzaei A; Masoumiasl A; Sadatfaraji H Mater Sci Eng C Mater Biol Appl; 2019 May; 98():535-544. PubMed ID: 30813055 [TBL] [Abstract][Full Text] [Related]
69. Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Guo J; Li Y; Wang L; Xu J; Huang Y; Luo Y; Shen F; Sun C; Meng R Anal Bioanal Chem; 2016 Jan; 408(2):557-66. PubMed ID: 26521176 [TBL] [Abstract][Full Text] [Related]
70. Hydrothermal synthesis of high-quality type-II CdTe/CdSe quantum dots with near-infrared fluorescence. Wang J; Han H J Colloid Interface Sci; 2010 Nov; 351(1):83-7. PubMed ID: 20692669 [TBL] [Abstract][Full Text] [Related]
71. New insights into the release mechanism of Cd Zhao L; Guo Z; Wu H; Wang Y; Zhang H; Liu R Ecotoxicol Environ Saf; 2020 Jun; 196():110569. PubMed ID: 32278141 [TBL] [Abstract][Full Text] [Related]
72. Synthesis of highly luminescent and biocompatible CdTe/CdS/ZnS quantum dots using microwave irradiation: a comparative study of different ligands. He H; Sun X; Wang X; Xu H Luminescence; 2014 Nov; 29(7):837-45. PubMed ID: 24436082 [TBL] [Abstract][Full Text] [Related]
73. Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(II). Xia Y; Zhu C Analyst; 2008 Jul; 133(7):928-32. PubMed ID: 18575647 [TBL] [Abstract][Full Text] [Related]
74. [Fluorescence resonance energy transfer between gentamycin and water-soluble CdTe QDs]. Li JG; Zhu K; Xu F; Jiang HY; Ding SY Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3070-4. PubMed ID: 20101988 [TBL] [Abstract][Full Text] [Related]
75. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress. Yan M; Zhang Y; Qin H; Liu K; Guo M; Ge Y; Xu M; Sun Y; Zheng X Int J Nanomedicine; 2016; 11():529-42. PubMed ID: 26893560 [TBL] [Abstract][Full Text] [Related]
76. Molecular interaction investigation between three CdTe:Zn(2+) quantum dots and human serum albumin: A comparative study. Huang S; Qiu H; Liu Y; Huang C; Sheng J; Su W; Xiao Q Colloids Surf B Biointerfaces; 2015 Dec; 136():955-62. PubMed ID: 26555713 [TBL] [Abstract][Full Text] [Related]
77. [Size exclusionchromatography-high-performance liquid chromatography-inductively coupled plasma mass spectrometry for measuring the stability of cadmium telluridequantum dots]. Li HL; Hu Y; Meng PJ; Zhang XY; Xie YY; Huang PL Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2017 Mar; 35(3):217-220. PubMed ID: 28511312 [No Abstract] [Full Text] [Related]
78. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Cho SJ; Maysinger D; Jain M; Röder B; Hackbarth S; Winnik FM Langmuir; 2007 Feb; 23(4):1974-80. PubMed ID: 17279683 [TBL] [Abstract][Full Text] [Related]
79. Cathodic stripping synthesis and cytotoxity studies of glutathione-capped CdTe quantum dots. Ge C; Zhao Y; Hui J; Zhang T; Miao W; Yu W J Nanosci Nanotechnol; 2011 Aug; 11(8):6710-7. PubMed ID: 22103072 [TBL] [Abstract][Full Text] [Related]
80. Adhesion of quantum dots-induced membrane damage of Escherichia coli. Lai L; Lin C; Xiao CQ; Xu ZQ; Han XL; Fu L; Li DW; Mei P; Jiang FL; Guo QL; Liu Y J Colloid Interface Sci; 2013 Jan; 389(1):61-70. PubMed ID: 23044269 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]