These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 32668378)

  • 1. Rationally engineered prolyl endopeptidases from Sphingomonas capsulata with improved hydrolytic activity towards pathogenic peptides of celiac diseases.
    Xiao B; Zhang C; Song X; Wu M; Mao J; Yu R; Zheng Y
    Eur J Med Chem; 2020 Sep; 202():112499. PubMed ID: 32668378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the allosteric mechanisms of prolyl endopeptidases for celiac disease therapy: Insights from molecular dynamics simulations.
    Wang Y; Xing S; Zhao X; Chen X; Zhan CG
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129313. PubMed ID: 38216012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolyl endopeptidases.
    Gass J; Khosla C
    Cell Mol Life Sci; 2007 Feb; 64(3):345-55. PubMed ID: 17160352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of SC PEP with enhanced stability against pepsin digestion and increased activity by machine learning and structural parameters modeling.
    Xiao B; Zhang C; Zhou J; Wang S; Meng H; Wu M; Zheng Y; Yu R
    Int J Biol Macromol; 2023 Oct; 250():125933. PubMed ID: 37482154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and mechanistic analysis of two prolyl endopeptidases: role of interdomain dynamics in catalysis and specificity.
    Shan L; Mathews II; Khosla C
    Proc Natl Acad Sci U S A; 2005 Mar; 102(10):3599-604. PubMed ID: 15738423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of
    Stefanolo JP; Segura V; Grizzuti M; Heredia A; Comino I; Costa AF; Puebla R; Temprano MP; Niveloni SI; de Diego G; Oregui ME; Smecuol EG; de Marzi MC; Verdú EF; Sousa C; Bai JC
    World J Gastroenterol; 2024 Mar; 30(11):1545-1555. PubMed ID: 38617446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed-Mutagenesis of
    Osorio CE; Wen N; Mejías JH; Mitchell S; von Wettstein D; Rustgi S
    Front Nutr; 2020; 7():11. PubMed ID: 32133368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of the prolyl endoprotease (PEP) from Aspergillus sp. FSDE 16 by solid-state fermentation (SSF) and use for producing a gluten-free beer.
    Almeida TC; Santos SFM; Santos ESD
    Biotechnol Appl Biochem; 2024 Apr; 71(2):460-476. PubMed ID: 38212282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and time-resolved mechanistic investigations of protein hydrolysis by the acidic proline-specific endoprotease from Aspergillus niger.
    Pijning T; Vujičić-Žagar A; van der Laan JM; de Jong RM; Ramirez-Palacios C; Vente A; Edens L; Dijkstra BW
    Protein Sci; 2024 Jan; 33(1):e4856. PubMed ID: 38059672
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Noori E; Bandehpour M; Zali MR; Kazemi B
    Iran J Biotechnol; 2023 Jul; 21(3):e3420. PubMed ID: 38344704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced-fit mechanism for prolyl endopeptidase.
    Li M; Chen C; Davies DR; Chiu TK
    J Biol Chem; 2010 Jul; 285(28):21487-95. PubMed ID: 20444688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificity Enhancement of Glutenase Bga1903 toward Celiac Disease-Eliciting Pro-Immunogenic Peptides via Active-Site Modification.
    Liu YY; Ye RL; Meng M
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step high efficiency separation of prolyl endopeptidase from Aspergillus niger and its application.
    Jiang B; Yue H; Fu X; Wang J; Feng Y; Li D; Liu C; Feng Z
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132582. PubMed ID: 38801849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational analysis of the domain architecture and substrate-gating mechanism of prolyl oligopeptidases from Shewanella woodyi and identification probable lead molecules.
    Patil P; Skariyachan S; Mutt E; Kaushik S
    Interdiscip Sci; 2015 Feb; ():. PubMed ID: 25663117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On catalytic preorganization in oxyanion holes: highlighting the problems with the gas-phase modeling of oxyanion holes and illustrating the need for complete enzyme models.
    Kamerlin SC; Chu ZT; Warshel A
    J Org Chem; 2010 Oct; 75(19):6391-401. PubMed ID: 20825150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of a Flavoenzyme for Aerobic Nicotine Catabolism.
    Hu H; Xu Z; Zhang Z; Song P; Stull F; Xu P; Tang H
    bioRxiv; 2024 Jul; ():. PubMed ID: 39026806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gluten Degrading Enzymes for Treatment of Celiac Disease.
    Wei G; Helmerhorst EJ; Darwish G; Blumenkranz G; Schuppan D
    Nutrients; 2020 Jul; 12(7):. PubMed ID: 32679754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational analysis of human gut microbial prolyl oligopeptidases (POPs) reveal candidate genes as therapeutics for celiac disease.
    Nayak S; Regati DR; Sowdhamini R
    Sci Rep; 2024 Aug; 14(1):19641. PubMed ID: 39179709
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Colella M; Cafiero C; Palmirotta R
    World J Gastroenterol; 2024 Jun; 30(24):3044-3047. PubMed ID: 38983964
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.