These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 32668556)
1. Biogasoline production from linoleic acid via catalytic cracking over nickel and copper-doped ZSM-5 catalysts. Gurdeep Singh HK; Yusup S; Quitain AT; Abdullah B; Ameen M; Sasaki M; Kida T; Cheah KW Environ Res; 2020 Jul; 186():109616. PubMed ID: 32668556 [TBL] [Abstract][Full Text] [Related]
2. Production of gasoline range hydrocarbons from catalytic cracking of linoleic acid over various acidic zeolite catalysts. Gurdeep Singh HK; Yusup S; Quitain AT; Kida T; Sasaki M; Cheah KW; Ameen M Environ Sci Pollut Res Int; 2019 Nov; 26(33):34039-34046. PubMed ID: 30232774 [TBL] [Abstract][Full Text] [Related]
3. Effect of Steam Deactivation Severity of ZSM-5 Additives on LPG Olefins Production in the FCC Process. Gusev AA; Psarras AC; Triantafyllidis KS; Lappas AA; Diddams PA Molecules; 2017 Oct; 22(10):. PubMed ID: 29065480 [TBL] [Abstract][Full Text] [Related]
4. Effect of catalyst additives on the production of biofuels from palm oil cracking in a transport riser reactor. Chew TL; Bhatia S Bioresour Technol; 2009 May; 100(9):2540-5. PubMed ID: 19138514 [TBL] [Abstract][Full Text] [Related]
5. Catalytic pyrolysis of fish waste oil using ZSM-5 catalyst for the production of renewable biofuel. Brindhadevi K; Karuppusamy I; Albeshr MF; Shanmuganathan R Environ Res; 2024 Oct; 258():119486. PubMed ID: 38925464 [TBL] [Abstract][Full Text] [Related]
6. High quality liquid fuel production from waste plastics via two-step cracking route in a bottom-up approach using bi-functional Fe/HZSM-5 catalyst. Dwivedi U; Naik SN; Pant KK Waste Manag; 2021 Aug; 132():151-161. PubMed ID: 34333250 [TBL] [Abstract][Full Text] [Related]
7. Tuning the morphology and textural properties of ZSM-5 additive for co-cracking of waste plastics with vacuum gas oil to light olefins. Tanimu A; Aitani A; Hadi Al-Shuqaih R; Ahmad Alghamdi A; Musa Alhassan A; Shafi S Waste Manag; 2024 Dec; 189():254-264. PubMed ID: 39216367 [TBL] [Abstract][Full Text] [Related]
8. Catalytic cracking of bio-oil to organic liquid product (OLP). Hew KL; Tamidi AM; Yusup S; Lee KT; Ahmad MM Bioresour Technol; 2010 Nov; 101(22):8855-8. PubMed ID: 20621470 [TBL] [Abstract][Full Text] [Related]
9. A comprehensive study of product distributions and coke deposition during catalytic cracking of vacuum gas oil over hierarchical zeolites. Fals J; Toloza CAT; Puello-Polo E; Márquez E; Méndez FJ Heliyon; 2023 Apr; 9(4):e15408. PubMed ID: 37123963 [TBL] [Abstract][Full Text] [Related]
10. Enhanced degradation of VOCs from biomass gasification catalyzed by Ni/HZSM-5 series catalyst. Liu P; Chen Z; Li X; Chen W; Li Y; Sun T; Yang Y; Lei T J Environ Manage; 2023 Nov; 345():118661. PubMed ID: 37515885 [TBL] [Abstract][Full Text] [Related]
11. Laboratory Production of Biofuels and Biochemicals from a Rapeseed Oil through Catalytic Cracking Conversion. Ng SH; Shi Y; Heshka NE; Zhang Y; Little E J Vis Exp; 2016 Sep; (115):. PubMed ID: 27684325 [TBL] [Abstract][Full Text] [Related]
12. In situ hydro-deoxygenation onto nickel-doped HZSM-5 zeolite catalyst for upgrading pyrolytic oil. Wantala K; Klangwichian W; Suwannaruang T; Praphatsaraphiwat S; Taksungnern R; Chirawatkul P; Kaewluan S; Shivaraju HP Environ Sci Pollut Res Int; 2023 Nov; 30(55):117829-117845. PubMed ID: 37875756 [TBL] [Abstract][Full Text] [Related]
13. High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas. Bedenbaugh JE; Kim S; Sasmaz E; Lauterbach J ACS Comb Sci; 2013 Sep; 15(9):491-7. PubMed ID: 23879196 [TBL] [Abstract][Full Text] [Related]
14. Transportation fuel production by combination of LDPE thermal cracking and catalytic hydroreforming. Escola JM; Aguado J; Serrano DP; Briones L Waste Manag; 2014 Nov; 34(11):2176-84. PubMed ID: 25027227 [TBL] [Abstract][Full Text] [Related]
15. Role of Catalyst in Optimizing Fluid Catalytic Cracking Performance During Cracking of H-Oil-Derived Gas Oils. Stratiev D; Shishkova I; Ivanov M; Dinkov R; Georgiev B; Argirov G; Atanassova V; Vassilev P; Atanassov K; Yordanov D; Popov A; Padovani A; Hartmann U; Brandt S; Nenov S; Sotirov S; Sotirova E ACS Omega; 2021 Mar; 6(11):7626-7637. PubMed ID: 33778273 [TBL] [Abstract][Full Text] [Related]
16. Catalytic upgrading of oil fractions separated from food waste leachate. Heo HS; Kim SG; Jeong KE; Jeon JK; Park SH; Kim JM; Kim SS; Park YK Bioresour Technol; 2011 Feb; 102(4):3952-7. PubMed ID: 21177101 [TBL] [Abstract][Full Text] [Related]
17. Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies. Taufiqurrahmi N; Mohamed AR; Bhatia S Bioresour Technol; 2011 Nov; 102(22):10686-94. PubMed ID: 21924606 [TBL] [Abstract][Full Text] [Related]
18. Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation. Chen G; Zhang R; Ma W; Liu B; Li X; Yan B; Cheng Z; Wang T Sci Total Environ; 2018 Aug; 631-632():1611-1622. PubMed ID: 29727985 [TBL] [Abstract][Full Text] [Related]
19. Deactivation and regeneration dynamics in hierarchical zeolites: Coke characterization and impact on catalytic cracking of vacuum gas oil. Fals J; Ospina-Castro ML; Ramos-Hernández A; Pacheco-Londoño L; Bocanegra S Heliyon; 2024 Sep; 10(18):e37813. PubMed ID: 39315141 [TBL] [Abstract][Full Text] [Related]
20. Regulating light olefins or aromatics production in ex-situ catalytic pyrolysis of biomass by engineering the structure of tin modified ZSM-5 catalyst. Shang J; Fu G; Cai Z; Feng X; Tuo Y; Zhou X; Yan H; Peng C; Jin X; Liu Y; Chen X; Yang C; Chen D Bioresour Technol; 2021 Jun; 330():124975. PubMed ID: 33770733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]