These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32668653)

  • 41. Engineering the Core-Shell-Structured NCNTs-Ni
    Chen M; Jing QS; Sun HB; Xu JQ; Yuan ZY; Ren JT; Ding AX; Huang ZY; Dong MY
    Langmuir; 2019 May; 35(19):6321-6332. PubMed ID: 31009568
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Low-Temperature Spark Plasma Sintering of ZrW
    Wei H; Hasegawa M; Mizutani S; Aimi A; Fujimoto K; Nishio K
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200462
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of Composition and Thermal Treatments on Microhardness of the Filled Skutterudite Sm(y) (Fe(x) Ni(1−x)₄Sb₁₂.
    Artini C; Carlini R
    J Nanosci Nanotechnol; 2017 Mar; 17(3):1634-639. PubMed ID: 29693990
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interfacial Superassembly of Grape-Like MnO-Ni@C Frameworks for Superior Lithium Storage.
    Hou C; Wang J; Zhang W; Li J; Zhang R; Zhou J; Fan Y; Li D; Dang F; Liu J; Li Y; Liang K; Kong B
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13770-13780. PubMed ID: 32096974
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spark plasma sintered Ni-YSZ/YSZ bi-layers for solid oxide fuel cell.
    Bezdorozhev O; Borodianska H; Sakka Y; Vasylkiv O
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4150-7. PubMed ID: 23862464
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterisation of interfacial segregation to Cu-enriched precipitates in two thermally aged reactor pressure vessel steel welds.
    Styman PD; Hyde JM; Wilford K; Parfitt D; Riddle N; Smith GD
    Ultramicroscopy; 2015 Dec; 159 Pt 2():292-8. PubMed ID: 26051655
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Suppressing the Structure Deterioration of Ni-Rich LiNi
    Zhang J; Yang Z; Gao R; Gu L; Hu Z; Liu X
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29794-29803. PubMed ID: 28799736
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mo-Fe/NbFeSb Thermoelectric Junctions: Anti-Thermal Aging Interface and Low Contact Resistivity.
    Wang Z; Fu C; Xia K; Liu F; Zhao X; Zhu T
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7317-7323. PubMed ID: 33530689
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermal Expansion of Sintered Glass Ceramics in the System BaO-SrO-ZnO-SiO2 and Its Dependence on Particle Size.
    Thieme C; Schlesier M; Bocker C; Buzatto de Souza G; Rüssel C
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20212-9. PubMed ID: 27433854
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of Bi-Te
    Park MS; Koo HY; Ha GH; Park YH
    J Nanosci Nanotechnol; 2020 Jan; 20(1):427-432. PubMed ID: 31383189
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Correlation of Microstructure and Mechanical Properties of In-Situ Al-Mg
    Chegini M; Shaeri MH; Taghiabadi R; Chegini S; Djavanroodi F
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bi and Sn Co-doping Enhanced Thermoelectric Properties of Cu
    Shen M; Lu S; Zhang Z; Liu H; Shen W; Fang C; Wang Q; Chen L; Zhang Y; Jia X
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8271-8279. PubMed ID: 31990526
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interpreting the Combustion Process for High-Performance ZrNiSn Thermoelectric Materials.
    Hu T; Yang D; Su X; Yan Y; You Y; Liu W; Uher C; Tang X
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):864-872. PubMed ID: 29236464
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In situ synthesis of carbon doped porous silicon nanocomposites as high-performance anodes for lithium-ion batteries.
    Chen Y; Bao L; Du N; Yang T; Mao Q; Lu X; Lin Y; Ji Z
    Nanotechnology; 2019 Jan; 30(3):035602. PubMed ID: 30418956
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of differences in coefficient of thermal expansion of veneer and Y-TZP ceramics on interface phase transformation.
    Hallmann L; Ulmer P; Wille S; Kern M
    J Prosthet Dent; 2014 Sep; 112(3):591-9. PubMed ID: 24655563
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Minority Carrier Blocking to Enhance the Thermoelectric Performance of Solution-Processed Bi
    Zhang C; Ng H; Li Z; Khor KA; Xiong Q
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12501-12510. PubMed ID: 28318220
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bulk TiB₂-Based Ceramic Composites with Improved Mechanical Property Using Fe-Ni-Ti-Al as a Sintering Aid.
    Yang C; Guo H; Mo D; Qu S; Li X; Zhang W; Zhang L
    Materials (Basel); 2014 Oct; 7(10):7105-7117. PubMed ID: 28788235
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis and Mechanical Characterization of a Ti(C,N)/Mo-Co-Ni/CaF
    Li C; Yi M; Wei G; Xu C
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31801299
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of sintering temperature on the microstructure and thermoelectric properties of polycrystalline Fe1.9925P0.0075O3.
    Hwang HK; Lee GW; Athar T; Kim SJ; Seo WS; Lim YS; Choi SM; Park K
    J Nanosci Nanotechnol; 2013 Jan; 13(1):405-8. PubMed ID: 23646746
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles.
    Liu J; Chen H; Ji H; Li M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.