These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 32668746)

  • 21. Response Surface Methods Used for Optimization of Abrasive Waterjet Machining of the Stainless Steel X2 CrNiMo 17-12-2.
    Deaconescu A; Deaconescu T
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34064660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of the Influence of Selected Technological Parameters on the Morphology Parameters of the Cutting Surfaces of the Hardox 500 Material Cut by Abrasive Water Jet Technology.
    Krenicky T; Olejarova S; Servatka M
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling and Optimization of Cut Quality Responses in Plasma Jet Cutting of Aluminium Alloy EN AW-5083.
    Peko I; Marić D; Nedić B; Samardžić I
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing High-Alloy Steel Cutting with Abrasive Water Injection Jet (AWIJ) Technology: An Approach Using the Response Surface Methodology (RSM).
    Perec A; Kawecka E; Pude F
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defect Analysis and Detection of Cutting Regions in CFRP Machining Using AWJM.
    Mayuet Ares PF; Girot Mata F; Batista Ponce M; Salguero Gómez J
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Possibilities of Rock Processing with a High-Pressure Abrasive Waterjet with an Aspect Terms to Minimizing Energy Consumption.
    Chomka G; Kasperowicz M; Chodór J; Chudy J; Kukiełka L
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic Abrasive Machining of Difficult-to-Cut Materials for Ultra-High-Speed Machining of AISI 304 Bars.
    Wang R; Lim P; Heng L; Mun SD
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28869557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Statistical and Optimization Study on the Influence of Different Abrasive Types on Kerf Quality and Productivity during Abrasive Waterjet (AWJ) Milling of Ti-4Al-6V.
    Karkalos NE; Dekster L; Kudelski R; Karmiris-Obratański P
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of Surface Roughness and Defect Formation after The Machining of Sintered Aluminum Alloy AlSi10Mg.
    Struzikiewicz G; Sioma A
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Use of a Radial Basis Function Neural Network and Fuzzy Modelling in the Assessment of Surface Roughness in the MDF Milling Process.
    Szwajka K; Zielińska-Szwajka J; Trzepieciński T
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analyses of Vibration Signals Generated in W. Nr. 1.0038 Steel during Abrasive Water Jet Cutting Aimed to Process Control.
    Tyč M; Hlaváčová IM; Barták P
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Roughness model of an optical surface in ultrasonic assisted diamond turning.
    Xing Y; Liu Y; Yang C; Xue C
    Appl Opt; 2020 Nov; 59(31):9722-9734. PubMed ID: 33175808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of Abrasive Waterjet Machining Parameters of Military-Grade Armor Steel by Semi-Empirical and Regression Models.
    Rammohan S; Kumaran ST; Uthayakumar M; Korniejenko K; Nykiel M; Velayutham A
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequential Smoothing Treatment of Glass Workpieces Cut by Abrasive Water Jet.
    Sutowska M; Łukianowicz C; Szada-Borzyszkowska M
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficiency of Tool Steel Cutting by Water Jet with Recycled Abrasive Materials.
    Perec A; Radomska-Zalas A; Fajdek-Bieda A; Kawecka E
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the Cutting Abilities of the Multilayer Grinding Wheels-Case of Ti-6Al-4V Alloy Grinding.
    Lipiński D; Banaszek K; Rypina Ł
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface Roughness after Milling of the Al/CFRP Stacks with a Diamond Tool.
    Doluk E; Rudawska A; Kuczmaszewski J; Miturska-Barańska I
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cutting meat with bone using an ultrahigh pressure abrasive waterjet.
    Wang J; Shanmugam DK
    Meat Sci; 2009 Apr; 81(4):671-7. PubMed ID: 20416572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Abrasive Waterjet (AWJ) Forces-Indicator of Cutting System Malfunction.
    Hlaváč LM; Bańkowski D; Krajcarz D; Štefek A; Tyč M; Młynarczyk P
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33805578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Experimental Study on the Precision Abrasive Machining Process of Hard and Brittle Materials with Ultraviolet-Resin Bond Diamond Abrasive Tools.
    Guo L; Zhang X; Chen S; Hui J
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30609735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.