These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32668935)

  • 1. Systematic errors in diffusion coefficients from long-time molecular dynamics simulations at constant pressure.
    von Bülow S; Bullerjahn JT; Hummer G
    J Chem Phys; 2020 Jul; 153(2):021101. PubMed ID: 32668935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal estimates of self-diffusion coefficients from molecular dynamics simulations.
    Bullerjahn JT; von Bülow S; Hummer G
    J Chem Phys; 2020 Jul; 153(2):024116. PubMed ID: 32668929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible Unwrapping Algorithm for Constant-Pressure Molecular Dynamics Simulations.
    Kulke M; Vermaas JV
    J Chem Theory Comput; 2022 Oct; 18(10):6161-6171. PubMed ID: 36129782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics in the isothermal-isobaric ensemble: the requirement of a "shell" molecule. II. Simulation results.
    Uline MJ; Corti DS
    J Chem Phys; 2005 Oct; 123(16):164102. PubMed ID: 16268676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic boundary conditions for long-time nonequilibrium molecular dynamics simulations of incompressible flows.
    Dobson M
    J Chem Phys; 2014 Nov; 141(18):184103. PubMed ID: 25399128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constant pressure and temperature discrete-time Langevin molecular dynamics.
    Grønbech-Jensen N; Farago O
    J Chem Phys; 2014 Nov; 141(19):194108. PubMed ID: 25416875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries.
    Berk Usta O; Ladd AJ; Butler JE
    J Chem Phys; 2005 Mar; 122(9):094902. PubMed ID: 15836176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Brownian dynamics simulation of particles near walls. I. Reflecting and absorbing walls.
    Peters EA; Barenbrug TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056701. PubMed ID: 12513631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of solutes with hydrodynamic interactions: comparison between Brownian dynamics and stochastic rotation dynamics simulations.
    Batôt G; Dahirel V; Mériguet G; Louis AA; Jardat M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043304. PubMed ID: 24229301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations.
    Mester Z; Panagiotopoulos AZ
    J Chem Phys; 2015 Jul; 143(4):044505. PubMed ID: 26233143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscosity in molecular dynamics with periodic boundary conditions.
    Viscardy S; Gaspard P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041204. PubMed ID: 14682933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal dynamics: influence of diffusion, inertia and colloidal forces on cluster formation.
    Kovalchuk N; Starov V; Langston P; Hilal N; Zhdanov V
    J Colloid Interface Sci; 2008 Sep; 325(2):377-85. PubMed ID: 18619605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent diffusion coefficients in periodic porous materials.
    Dudko OK; Berezhkovskii AM; Weiss GH
    J Phys Chem B; 2005 Nov; 109(45):21296-9. PubMed ID: 16853761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics in the isothermal-isobaric ensemble: the requirement of a "shell" molecule. I. Theory and phase-space analysis.
    Uline MJ; Corti DS
    J Chem Phys; 2005 Oct; 123(16):164101. PubMed ID: 16268675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-scale Brownian dynamics of suspensions of charged nanoparticles including electrostatic and hydrodynamic interactions.
    Dahirel V; Jardat M; Dufrêche JF; Turq P
    J Chem Phys; 2009 Dec; 131(23):234105. PubMed ID: 20025312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constant-pressure simulations with dissipative particle dynamics.
    Trofimov SY; Nies EL; Michels MA
    J Chem Phys; 2005 Oct; 123(14):144102. PubMed ID: 16238369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The flexible, polarizable, thole-type interaction potential for water (TTM2-F) revisited.
    Fanourgakis GS; Xantheas SS
    J Phys Chem A; 2006 Mar; 110(11):4100-6. PubMed ID: 16539435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction schemes, escape times and geminate recombinations in particle-based spatial simulations of biochemical reactions.
    Klann M; Koeppl H
    Phys Biol; 2013 Aug; 10(4):046005. PubMed ID: 23820050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotational Diffusion Depends on Box Size in Molecular Dynamics Simulations.
    Linke M; Köfinger J; Hummer G
    J Phys Chem Lett; 2018 Jun; 9(11):2874-2878. PubMed ID: 29749735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid.
    Cao BY; Dong RY
    J Chem Phys; 2014 Jan; 140(3):034703. PubMed ID: 25669403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.