These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Does ℏ play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations. Sakurai A; Tanimura Y J Phys Chem A; 2011 Apr; 115(16):4009-22. PubMed ID: 21247206 [TBL] [Abstract][Full Text] [Related]
5. Collective bath coordinate mapping of "hierarchy" in hierarchical equations of motion. Ikeda T; Nakayama A J Chem Phys; 2022 Mar; 156(10):104104. PubMed ID: 35291776 [TBL] [Abstract][Full Text] [Related]
6. Exciton transfer using rates extracted from the "hierarchical equations of motion". Seibt J; Kühn O J Chem Phys; 2020 Nov; 153(19):194112. PubMed ID: 33218227 [TBL] [Abstract][Full Text] [Related]
7. Equilibrium excited state and emission spectra of molecular aggregates from the hierarchical equations of motion approach. Jing Y; Chen L; Bai S; Shi Q J Chem Phys; 2013 Jan; 138(4):045101. PubMed ID: 23387623 [TBL] [Abstract][Full Text] [Related]
8. Bexcitonics: Quasiparticle approach to open quantum dynamics. Chen X; Franco I J Chem Phys; 2024 May; 160(20):. PubMed ID: 38814013 [TBL] [Abstract][Full Text] [Related]
9. Using non-Markovian measures to evaluate quantum master equations for photosynthesis. Chen HB; Lambert N; Cheng YC; Chen YN; Nori F Sci Rep; 2015 Aug; 5():12753. PubMed ID: 26238479 [TBL] [Abstract][Full Text] [Related]
10. Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities. Tanimura Y J Chem Phys; 2014 Jul; 141(4):044114. PubMed ID: 25084888 [TBL] [Abstract][Full Text] [Related]
11. Quantum rate dynamics for proton transfer reactions in condensed phase: the exact hierarchical equations of motion approach. Chen L; Shi Q J Chem Phys; 2009 Apr; 130(13):134505. PubMed ID: 19355749 [TBL] [Abstract][Full Text] [Related]
12. Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes. Liu H; Zhu L; Bai S; Shi Q J Chem Phys; 2014 Apr; 140(13):134106. PubMed ID: 24712779 [TBL] [Abstract][Full Text] [Related]
13. Efficient calculation of open quantum system dynamics and time-resolved spectroscopy with distributed memory HEOM (DM-HEOM). Kramer T; Noack M; Reinefeld A; Rodríguez M; Zelinskyy Y J Comput Chem; 2018 Aug; 39(22):1779-1794. PubMed ID: 29888450 [TBL] [Abstract][Full Text] [Related]
15. Spins Dynamics in a Dissipative Environment: Hierarchal Equations of Motion Approach Using a Graphics Processing Unit (GPU). Tsuchimoto M; Tanimura Y J Chem Theory Comput; 2015 Aug; 11(8):3859-65. PubMed ID: 26574467 [TBL] [Abstract][Full Text] [Related]
16. Strong Exciton-Vibrational Coupling in Molecular Assemblies. Dynamics Using the Polaron Transformation in HEOM Space. Seibt J; Kühn O J Phys Chem A; 2021 Aug; 125(32):7052-7065. PubMed ID: 34353023 [TBL] [Abstract][Full Text] [Related]
17. General framework for quantifying dissipation pathways in open quantum systems. II. Numerical validation and the role of non-Markovianity. Kim CW; Franco I J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38833365 [TBL] [Abstract][Full Text] [Related]
18. A hybrid stochastic hierarchy equations of motion approach to treat the low temperature dynamics of non-Markovian open quantum systems. Moix JM; Cao J J Chem Phys; 2013 Oct; 139(13):134106. PubMed ID: 24116551 [TBL] [Abstract][Full Text] [Related]
19. Typical, finite baths as a means of exact simulation of open quantum systems. Silvestri L; Jacobs K; Dunjko V; Olshanii M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042131. PubMed ID: 24827216 [TBL] [Abstract][Full Text] [Related]