These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32668946)

  • 1. Atomic force microscopy: Emerging illuminated and operando techniques for solar fuel research.
    Yu W; Fu HJ; Mueller T; Brunschwig BS; Lewis NS
    J Chem Phys; 2020 Jul; 153(2):020902. PubMed ID: 32668946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.
    Stoerzinger KA; Hong WT; Crumlin EJ; Bluhm H; Shao-Horn Y
    Acc Chem Res; 2015 Nov; 48(11):2976-83. PubMed ID: 26305627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing and mapping electrode surfaces in solid oxide fuel cells.
    Blinn KS; Li X; Liu M; Bottomley LA; Liu M
    J Vis Exp; 2012 Sep; (67):e50161. PubMed ID: 23023264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials.
    Giridharagopal R; Cox PA; Ginger DS
    Acc Chem Res; 2016 Sep; 49(9):1769-76. PubMed ID: 27575611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ/Operando X-ray Spectroscopies for Advanced Investigation of Energy Materials.
    Dong CL; Vayssieres L
    Chemistry; 2018 Dec; 24(69):18356-18373. PubMed ID: 30300939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge Carrier Activity on Single-Particle Photo(electro)catalysts: Toward Function in Solar Energy Conversion.
    Hesari M; Mao X; Chen P
    J Am Chem Soc; 2018 Jun; 140(22):6729-6740. PubMed ID: 29750519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning Probe Microscopy Facility for Operando Study of Redox Processes on Lithium ion Battery Electrodes.
    Legerstee WJ; Boekel M; Boonstra S; Kelder EM
    Front Chem; 2021; 9():505876. PubMed ID: 33937182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoelectrical and Nanoelectrochemical Imaging of Pt/p-Si and Pt/p
    Jiang J; Huang Z; Xiang C; Poddar R; Lewerenz HJ; Papadantonakis KM; Lewis NS; Brunschwig BS
    ChemSusChem; 2017 Nov; 10(22):4657-4663. PubMed ID: 28636780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Domain Imaging of All-Polymer Organic Solar Cells by Photo-Induced Force Microscopy.
    Gu KL; Zhou Y; Morrison WA; Park K; Park S; Bao Z
    ACS Nano; 2018 Feb; 12(2):1473-1481. PubMed ID: 29338202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale semiconductor/catalyst interfaces in photoelectrochemistry.
    Laskowski FAL; Oener SZ; Nellist MR; Gordon AM; Bain DC; Fehrs JL; Boettcher SW
    Nat Mater; 2020 Jan; 19(1):69-76. PubMed ID: 31591528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Analytical Techniques for the Investigation of Material Stability and Interface Dynamics in Electrocatalytic and Photoelectrochemical Applications.
    Pishgar S; Gulati S; Strain JM; Liang Y; Mulvehill MC; Spurgeon JM
    Small Methods; 2021 Jul; 5(7):e2100322. PubMed ID: 34927994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced and In Situ Analytical Methods for Solar Fuel Materials.
    Chan CK; Tüysüz H; Braun A; Ranjan C; La Mantia F; Miller BK; Zhang L; Crozier PA; Haber JA; Gregoire JM; Park HS; Batchellor AS; Trotochaud L; Boettcher SW
    Top Curr Chem; 2016; 371():253-324. PubMed ID: 26267386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research.
    Hodnik N; Dehm G; Mayrhofer KJ
    Acc Chem Res; 2016 Sep; 49(9):2015-22. PubMed ID: 27541965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Measurements of Charge Transfer at Cocatalyst/Semiconductor Interfaces in BiVO
    Shen M; Kaufman AJ; Huang J; Price C; Boettcher SW
    Nano Lett; 2022 Dec; 22(23):9493-9499. PubMed ID: 36382908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced atomic force microscopy-based techniques for nanoscale characterization of switching devices for emerging neuromorphic applications.
    Kim YM; Lee J; Jeon DJ; Oh SE; Yeo JS
    Appl Microsc; 2021 May; 51(1):7. PubMed ID: 34037869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Electrochemical Atomic Force Microscopy (EC-AFM) in the Corrosion Study of Metallic Materials.
    Chen H; Qin Z; He M; Liu Y; Wu Z
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32028601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear and Nonlinear Optical Spectroscopy at the Nanoscale with Photoinduced Force Microscopy.
    Jahng J; Fishman DA; Park S; Nowak DB; Morrison WA; Wickramasinghe HK; Potma EO
    Acc Chem Res; 2015 Oct; 48(10):2671-9. PubMed ID: 26449563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of arrays of photosynthetically active heterostructures using conductive probe atomic force microscopy.
    Economou NJ; Mubeen S; Buratto SK; McFarland EW
    Nano Lett; 2014 Jun; 14(6):3328-34. PubMed ID: 24784236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.