These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 32669208)
1. Suppression of lactate production by aerobic fed-batch cultures of Lactococcus lactis. Sano A; Takatera M; Kawai M; Ichinose R; Yamasaki-Yashiki S; Katakura Y J Biosci Bioeng; 2020 Oct; 130(4):402-408. PubMed ID: 32669208 [TBL] [Abstract][Full Text] [Related]
2. Suppression of lactate production in fed-batch culture of some lactic acid bacteria with sucrose as the carbon source. Kawai M; Tsuchiya A; Ishida J; Yoda N; Yashiki-Yamasaki S; Katakura Y J Biosci Bioeng; 2020 May; 129(5):535-540. PubMed ID: 31836379 [TBL] [Abstract][Full Text] [Related]
3. Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR. Neves AR; Ventura R; Mansour N; Shearman C; Gasson MJ; Maycock C; Ramos A; Santos H J Biol Chem; 2002 Aug; 277(31):28088-98. PubMed ID: 12011086 [TBL] [Abstract][Full Text] [Related]
4. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. Lopez de Felipe F; Kleerebezem M; de Vos WM; Hugenholtz J J Bacteriol; 1998 Aug; 180(15):3804-8. PubMed ID: 9683475 [TBL] [Abstract][Full Text] [Related]
5. Analysis of hemin effect on lactate reduction in Lactococcus lactis. Nagayasu M; Wardani AK; Nagahisa K; Shimizu H; Shioya S J Biosci Bioeng; 2007 Jun; 103(6):529-34. PubMed ID: 17630124 [TBL] [Abstract][Full Text] [Related]
6. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis. Guo T; Kong J; Zhang L; Zhang C; Hu S PLoS One; 2012; 7(4):e36296. PubMed ID: 22558426 [TBL] [Abstract][Full Text] [Related]
7. Loss of NADH Oxidase Activity in Streptococcus mutans Leads to Rex-Mediated Overcompensation in NAD+ Regeneration by Lactate Dehydrogenase. Baker JL; Derr AM; Faustoferri RC; Quivey RG J Bacteriol; 2015 Dec; 197(23):3645-57. PubMed ID: 26350138 [TBL] [Abstract][Full Text] [Related]
8. Pyruvate flux distribution in NADH-oxidase-overproducing Lactococcus lactis strain as a function of culture conditions. Lopez de Felipe F; Hugenholtz J FEMS Microbiol Lett; 1999 Oct; 179(2):461-6. PubMed ID: 10518751 [TBL] [Abstract][Full Text] [Related]
9. Isolation and properties of Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 mutants producing diacetyl and acetoin from glucose. Boumerdassi H; Monnet C; Desmazeaud M; Corrieu G Appl Environ Microbiol; 1997 Jun; 63(6):2293-9. PubMed ID: 9172349 [TBL] [Abstract][Full Text] [Related]
10. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the effects of specific growth rate of Lactococcus lactis MG1363 on aerobic metabolism and its application to high-density culture. Ichinose R; Yamasaki-Yashiki S; Katakura Y J Biosci Bioeng; 2023 Aug; 136(2):129-135. PubMed ID: 37301698 [TBL] [Abstract][Full Text] [Related]
12. Identification of a conserved sequence in flavoproteins essential for the correct conformation and activity of the NADH oxidase NoxE of Lactococcus lactis. Tachon S; Chambellon E; Yvon M J Bacteriol; 2011 Jun; 193(12):3000-8. PubMed ID: 21498647 [TBL] [Abstract][Full Text] [Related]
13. Glucose metabolism of lactic acid bacteria changed by quinone-mediated extracellular electron transfer. Yamazaki S; Kaneko T; Taketomo N; Kano K; Ikeda T Biosci Biotechnol Biochem; 2002 Oct; 66(10):2100-6. PubMed ID: 12450120 [TBL] [Abstract][Full Text] [Related]
14. [Heterologous expression of H2O-forming NADH oxidase in Torulopsis glabrata significantly enhance the pyruvate productivity of the host]. Dong Z; Li X; Liu L; Du G; Chen J Wei Sheng Wu Xue Bao; 2008 Aug; 48(8):1061-6. PubMed ID: 18956756 [TBL] [Abstract][Full Text] [Related]
15. Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Neves AR; Ramos A; Shearman C; Gasson MJ; Almeida JS; Santos H Eur J Biochem; 2000 Jun; 267(12):3859-68. PubMed ID: 10849005 [TBL] [Abstract][Full Text] [Related]
16. Suppression of lactate production of Lactobacillus reuteri JCM1112 by co-feeding glycerol with glucose. Ichinose R; Fukuda Y; Yamasaki-Yashiki S; Katakura Y J Biosci Bioeng; 2020 Jan; 129(1):110-115. PubMed ID: 31519396 [TBL] [Abstract][Full Text] [Related]
17. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Andersen HW; Pedersen MB; Hammer K; Jensen PR Eur J Biochem; 2001 Dec; 268(24):6379-89. PubMed ID: 11737192 [TBL] [Abstract][Full Text] [Related]
18. Suppression of lactate production by using sucrose as a carbon source in lactic acid bacteria. Kawai M; Harada R; Yoda N; Yamasaki-Yashiki S; Fukusaki E; Katakura Y J Biosci Bioeng; 2020 Jan; 129(1):47-51. PubMed ID: 31371162 [TBL] [Abstract][Full Text] [Related]
19. High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NADâș cofactor recycling. Gaspar P; Neves AR; Gasson MJ; Shearman CA; Santos H Appl Environ Microbiol; 2011 Oct; 77(19):6826-35. PubMed ID: 21841021 [TBL] [Abstract][Full Text] [Related]
20. Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production. Bai DM; Zhao XM; Li XG; Xu SM Biotechnol Bioeng; 2004 Dec; 88(6):681-9. PubMed ID: 15532044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]