BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32670326)

  • 1. Heterogeneity of Stomatal Pore Area Is Suppressed by Ambient Aerosol in the Homobaric Species,
    Grantz DA; Karr M; Burkhardt J
    Front Plant Sci; 2020; 11():897. PubMed ID: 32670326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambient aerosol increases minimum leaf conductance and alters the aperture-flux relationship as stomata respond to vapor pressure deficit (VPD).
    Grantz DA; Zinsmeister D; Burkhardt J
    New Phytol; 2018 Jul; 219(1):275-286. PubMed ID: 29600514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerosol Impacts on Water Relations of Camphor (
    Chi CE; Zinsmeister D; Lai IL; Chang SC; Kuo YL; Burkhardt J
    Front Plant Sci; 2022; 13():892096. PubMed ID: 35795349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles?
    Burkhardt J; Pariyar S
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():91-100. PubMed ID: 26417842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?
    Aliniaeifard S; Malcolm Matamoros P; van Meeteren U
    Physiol Plant; 2014 Dec; 152(4):688-99. PubMed ID: 24773210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambient aerosols increase stomatal transpiration and conductance of hydroponic sunflowers by extending the hydraulic system to the leaf surface.
    Burkhardt J; Zinsmeister D; Roth-Nebelsick A; Hüging H; Pariyar S
    Front Plant Sci; 2023; 14():1275358. PubMed ID: 38098798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves.
    Pieruschka R; Schurr U; Jensen M; Wolff WF; Jahnke S
    New Phytol; 2006; 169(4):779-87. PubMed ID: 16441758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species.
    El-Sharkawy MA; Cock JH; Del Pilar Hernandez A
    Photosynth Res; 1985 Jan; 7(2):137-49. PubMed ID: 24443083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal change in response of stomatal conductance to vapor pressure deficit and three phytohormones in three tree species.
    Li J; Zhang GZ; Li X; Wang Y; Wang FZ; Li XM
    Plant Signal Behav; 2019; 14(12):1682341. PubMed ID: 31668123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomata prioritize their responses to multiple biotic and abiotic signal inputs.
    Ou X; Gan Y; Chen P; Qiu M; Jiang K; Wang G
    PLoS One; 2014; 9(7):e101587. PubMed ID: 25003527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stomatal conductance tracks soil-to-leaf hydraulic conductance in faba bean and maize during soil drying.
    Müllers Y; Postma JA; Poorter H; van Dusschoten D
    Plant Physiol; 2022 Nov; 190(4):2279-2294. PubMed ID: 36099023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of stomatal patchiness and its spatial scale in leaves from various sizes of trees distributed in a South-east Asian tropical rainforest in Peninsular Malaysia.
    Kamakura M; Kosugi Y; Takanashi S; Uemura A; Utsugi H; Kassim AR
    Tree Physiol; 2015 Jan; 35(1):61-70. PubMed ID: 25595752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal Ratio Showing No Response to Light Intensity in
    Wang T; Zheng L; Xiong D; Wang F; Man J; Deng N; Cui K; Huang J; Peng S; Ling X
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patchy stomatal behavior during midday depression of leaf CO₂ exchange in tropical trees.
    Kamakura M; Kosugi Y; Takanashi S; Matsumoto K; Okumura M; Philip E
    Tree Physiol; 2011 Feb; 31(2):160-8. PubMed ID: 21383025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stomatal sensitivity to carbon dioxide and humidity: a comparison of two c(3) and two c(4) grass species.
    Morison JI; Gifford RM
    Plant Physiol; 1983 Apr; 71(4):789-96. PubMed ID: 16662909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stomatal heterogeneity in responses to humidity and temperature: Testing a mechanistic model.
    Sweet KJ; Peak D; Mott KA
    Plant Cell Environ; 2017 Nov; 40(11):2771-2779. PubMed ID: 28777880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nocturnal Transpiration May Be Associated with Foliar Nutrient Uptake.
    Vega C; Chi CE; Fernández V; Burkhardt J
    Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relation between stomatal aperture and gas exchange under consideration of pore geometry and diffusional resistance in the mesophyll.
    Kaiser H
    Plant Cell Environ; 2009 Aug; 32(8):1091-8. PubMed ID: 19422613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonstomatal inhibition of photosynthesis by water stress. Reduction in photosynthesis at high transpiration rate without stomatal closure in field-grown tomato.
    Bunce JA
    Photosynth Res; 1988 Nov; 18(3):357-62. PubMed ID: 24425246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana.
    Franks PJ; Farquhar GD
    Plant Physiol; 2001 Feb; 125(2):935-42. PubMed ID: 11161050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.