These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32670742)

  • 21. High-Performance Semi-Transparent Perovskite Solar Cells with over 22% Visible Transparency: Pushing the Limit through MXene Interface Engineering.
    Yuan Z; Zhang M; Yen Z; Feng M; Jin X; Ibrahim A; Ahmed MG; Salim T; Gonçalves RA; Sum TC; Lam YM; Wong LH
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37629-37639. PubMed ID: 37463286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metallic nanoparticles and hybrids of metallic nanoparticles/graphene nanomaterials for enhanced photon harvesting and charge transport in polymer and dye sensitized solar cells.
    Amollo TA
    Heliyon; 2024 Mar; 10(5):e26401. PubMed ID: 38449657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanochemistry and nanomaterials for photovoltaics.
    Chen G; Seo J; Yang C; Prasad PN
    Chem Soc Rev; 2013 Nov; 42(21):8304-38. PubMed ID: 23868557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic-perovskite solar cells, light emitters, and sensors.
    Ai B; Fan Z; Wong ZJ
    Microsyst Nanoeng; 2022; 8():5. PubMed ID: 35070349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells.
    Wang B; Iocozzia J; Zhang M; Ye M; Yan S; Jin H; Wang S; Zou Z; Lin Z
    Chem Soc Rev; 2019 Sep; 48(18):4854-4891. PubMed ID: 31389932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arrays of Plasmonic Nanostructures for Absorption Enhancement in Perovskite Thin Films.
    Shen T; Tan Q; Dai Z; Padture NP; Pacifici D
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32660111
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Semitransparent Perovskite Solar Cells with > 13% Efficiency and 27% Transperancy Using Plasmonic Au Nanorods.
    Lie S; Bruno A; Wong LH; Etgar L
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11339-11349. PubMed ID: 35201744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional Materials for Fabrication of Carbon-Based Perovskite Solar Cells: Ink Formulation and Its Effect on Solar Cell Performance.
    Pourjafari D; García-Peña NG; Padrón-Hernández WY; Peralta-Domínguez D; Castro-Chong AM; Nabil M; Avilés-Betanzos RC; Oskam G
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photon management to reduce energy loss in perovskite solar cells.
    Chen C; Zheng S; Song H
    Chem Soc Rev; 2021 Jun; 50(12):7250-7329. PubMed ID: 33977928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic Near-Field Absorbers for Ultrathin Solar Cells.
    Hägglund C; Apell SP
    J Phys Chem Lett; 2012 May; 3(10):1275-85. PubMed ID: 26286771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multilayer Plasmonic Nanostructures for Improved Sensing Activities Using a FEM and Neurocomputing-Based Approach.
    Lo Sciuto G; Napoli C; Kowol P; Capizzi G; Brociek R; Wajda A; Słota D
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the efficiency of perovskite solar cells with a back reflector: effect of a hole transport material.
    Bonnín-Ripoll F; Martynov YB; Nazmitdinov RG; Cardona G; Pujol-Nadal R
    Phys Chem Chem Phys; 2021 Dec; 23(46):26250-26262. PubMed ID: 34787120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Charge transfer and recombination at the metal oxide/CH3NH3PbClI2/spiro-OMeTAD interfaces: uncovering the detailed mechanism behind high efficiency solar cells.
    Shen Q; Ogomi Y; Chang J; Tsukamoto S; Kukihara K; Oshima T; Osada N; Yoshino K; Katayama K; Toyoda T; Hayase S
    Phys Chem Chem Phys; 2014 Oct; 16(37):19984-92. PubMed ID: 25160913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light Management Enhancement for Four-Terminal Perovskite-Silicon Tandem Solar Cells: The Impact of the Optical Properties and Thickness of the Spacer Layer between Sub-Cells.
    Hajjiah A; Parmouneh F; Hadipour A; Jaysankar M; Aernouts T
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30562986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perovskite solar cells: from materials to devices.
    Jung HS; Park NG
    Small; 2015 Jan; 11(1):10-25. PubMed ID: 25358818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid Mesoporous TiO
    Drygała A; Starowicz Z; Gawlińska-Nęcek K; Karolus M; Lipiński M; Jarka P; Matysiak W; Tillová E; Palček P; Tański T
    Molecules; 2023 Jul; 28(15):. PubMed ID: 37570627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.
    Varlamov S; Rao J; Soderstrom T
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface plasmonic effects on organic solar cells.
    Uddin A; Yang X
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1099-119. PubMed ID: 24749415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonically Engineered Textile Polymer Solar Cells for High-Performance, Wearable Photovoltaics.
    Cho SH; Lee J; Lee MJ; Kim HJ; Lee SM; Choi KC
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20864-20872. PubMed ID: 31144506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.