These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32670742)

  • 41. Theoretical study of Ag and Au triple core-shell spherical plasmonic nanoparticles in ultra-thin film perovskite solar cells.
    Jangjoy A; Matloub S
    Opt Express; 2023 Jun; 31(12):19102-19115. PubMed ID: 37381334
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells.
    De Angelis F
    Acc Chem Res; 2014 Nov; 47(11):3349-60. PubMed ID: 24856085
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Perovskite Solar Cells for Space Applications: Progress and Challenges.
    Tu Y; Wu J; Xu G; Yang X; Cai R; Gong Q; Zhu R; Huang W
    Adv Mater; 2021 May; 33(21):e2006545. PubMed ID: 33861877
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synergistic Engineering of Conduction Band, Conductivity, and Interface of Bilayered Electron Transport Layers with Scalable TiO
    Chiang CH; Kan CW; Wu CG
    ACS Appl Mater Interfaces; 2021 May; 13(20):23606-23615. PubMed ID: 33974384
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells.
    Liao JF; Wu WQ; Jiang Y; Zhong JX; Wang L; Kuang DB
    Chem Soc Rev; 2020 Jan; 49(2):354-381. PubMed ID: 31859320
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of Metal Oxide Electron-Transport Layer Modification on the Stability of High Performing Perovskite Solar Cells.
    Singh T; Singh J; Miyasaka T
    ChemSusChem; 2016 Sep; 9(18):2559-2566. PubMed ID: 27554065
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient Carbon-Based CsPbBr
    Liu Z; Sun B; Liu X; Han J; Ye H; Shi T; Tang Z; Liao G
    Nanomicro Lett; 2018; 10(2):34. PubMed ID: 30393683
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detailed balance analysis of plasmonic metamaterial perovskite solar cells.
    Kim K; Lee S
    Opt Express; 2019 Aug; 27(16):A1241-A1260. PubMed ID: 31510517
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Light-Trapping Electrode for the Efficiency Enhancement of Bifacial Perovskite Solar Cells.
    Obraztsova AA; Barettin D; Furasova AD; Voroshilov PM; Auf der Maur M; Orsini A; Makarov SV
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144998
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organic and perovskite solar cells: Working principles, materials and interfaces.
    Marinova N; Valero S; Delgado JL
    J Colloid Interface Sci; 2017 Feb; 488():373-389. PubMed ID: 27871725
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phthalocyanines and porphyrinoid analogues as hole- and electron-transporting materials for perovskite solar cells.
    Urbani M; de la Torre G; Nazeeruddin MK; Torres T
    Chem Soc Rev; 2019 May; 48(10):2738-2766. PubMed ID: 31033978
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Elongated Lifetime and Enhanced Flux of Hot Electrons on a Perovskite Plasmonic Nanodiode.
    Park Y; Choi J; Lee C; Cho AN; Cho DW; Park NG; Ihee H; Park JY
    Nano Lett; 2019 Aug; 19(8):5489-5495. PubMed ID: 31348860
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent progress in perovskite solar cells: the perovskite layer.
    Dai X; Xu K; Wei F
    Beilstein J Nanotechnol; 2020; 11():51-60. PubMed ID: 31976196
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved Performance of Polymer Solar Cells by Thermal Evaporation of AgAl Alloy Nanostructures into the Hole-Transport Layer.
    Wang J; Jia X; Zhou J; Pan L; Huang S; Chen X
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26098-26104. PubMed ID: 27622573
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photonic-Plasmonic Nanostructures for Solar Energy Utilization and Emerging Biosensors.
    Tran VT; Nguyen HQ; Kim YM; Ok G; Lee J
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33198391
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 85 °C/85%-Stable n-i-p Perovskite Photovoltaics with NiO
    Cheng F; Cao F; Chen B; Dai X; Tang Z; Sun Y; Yin J; Li J; Zheng N; Wu B
    Adv Sci (Weinh); 2022 Sep; 9(26):e2201573. PubMed ID: 35859254
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Black Silver: Three-Dimensional Ag Hybrid Plasmonic Nanostructures with Strong Photon Coupling for Scalable Photothermoelectric Power Generation.
    Cheng P; Ziegler M; Ripka V; Wang H; Pollok K; Langenhorst F; Wang D; Schaaf P
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16894-16900. PubMed ID: 35362322
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent Advances of Plasmonic Organic Solar Cells: Photophysical Investigations.
    Feng L; Niu M; Wen Z; Hao X
    Polymers (Basel); 2018 Jan; 10(2):. PubMed ID: 30966159
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hot Carrier Extraction with Plasmonic Broadband Absorbers.
    Ng C; Cadusch JJ; Dligatch S; Roberts A; Davis TJ; Mulvaney P; Gómez DE
    ACS Nano; 2016 Apr; 10(4):4704-11. PubMed ID: 26982625
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lead-Free FACsSnI
    Moiz SA; Alahmadi ANM; Alshaikh MS
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.