These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 32671269)
1. Expression of SidD gene and physiological characterization of the rhizosphere plant growth-promoting yeasts. El-Maraghy SS; Tohamy TA; Hussein KA Heliyon; 2020 Jul; 6(7):e04384. PubMed ID: 32671269 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd(2.). Złoch M; Thiem D; Gadzała-Kopciuch R; Hrynkiewicz K Chemosphere; 2016 Aug; 156():312-325. PubMed ID: 27183333 [TBL] [Abstract][Full Text] [Related]
3. Identification of Heterotrophic Zinc Mobilization Processes among Bacterial Strains Isolated from Wheat Rhizosphere (Triticum aestivum L.). Costerousse B; Schönholzer-Mauclaire L; Frossard E; Thonar C Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29079619 [TBL] [Abstract][Full Text] [Related]
4. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Rizvi A; Khan MS Chemosphere; 2017 Oct; 185():942-952. PubMed ID: 28747006 [TBL] [Abstract][Full Text] [Related]
5. Assessment of plant growth promoting bacterial populations in the rhizosphere of metallophytes from the Kettara mine, Marrakech. Benidire L; Pereira SI; Castro PM; Boularbah A Environ Sci Pollut Res Int; 2016 Nov; 23(21):21751-21765. PubMed ID: 27522210 [TBL] [Abstract][Full Text] [Related]
6. Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. Verma P; Yadav AN; Khannam KS; Kumar S; Saxena AK; Suman A J Basic Microbiol; 2016 Jan; 56(1):44-58. PubMed ID: 26567901 [TBL] [Abstract][Full Text] [Related]
7. Isolation and characterization of yeasts associated with plants growing in heavy-metal- and arsenic-contaminated soils. Ramos-Garza J; Bustamante-Brito R; Ángeles de Paz G; Medina-Canales MG; Vásquez-Murrieta MS; Wang ET; Rodríguez-Tovar AV Can J Microbiol; 2016 Apr; 62(4):307-19. PubMed ID: 26936448 [TBL] [Abstract][Full Text] [Related]
9. Characterization of halotolerant, pigmented, plant growth promoting bacteria of groundnut rhizosphere and its in-vitro evaluation of plant-microbe protocooperation to withstand salinity and metal stress. Banik A; Pandya P; Patel B; Rathod C; Dangar M Sci Total Environ; 2018 Jul; 630():231-242. PubMed ID: 29482138 [TBL] [Abstract][Full Text] [Related]
10. Characterization of rhizosphere and endophytic bacteria from roots of maize ( Abedinzadeh M; Etesami H; Alikhani HA Biotechnol Rep (Amst); 2019 Mar; 21():e00305. PubMed ID: 30705833 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Jog R; Pandya M; Nareshkumar G; Rajkumar S Microbiology (Reading); 2014 Apr; 160(Pt 4):778-788. PubMed ID: 24430493 [TBL] [Abstract][Full Text] [Related]
12. High-throughput Siderophore Screening from Environmental Samples: Plant Tissues, Bulk Soils, and Rhizosphere Soils. Lewis RW; Islam AA; Dilla-Ermita CJ; Hulbert SH; Sullivan TS J Vis Exp; 2019 Feb; (144):. PubMed ID: 30799863 [TBL] [Abstract][Full Text] [Related]
13. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Rokhbakhsh-Zamin F; Sachdev D; Kazemi-Pour N; Engineer A; Pardesi KR; Zinjarde S; Dhakephalkar PK; Chopade BA J Microbiol Biotechnol; 2011 Jun; 21(6):556-66. PubMed ID: 21715961 [TBL] [Abstract][Full Text] [Related]
14. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
15. Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress. Farh ME; Kim YJ; Sukweenadhi J; Singh P; Yang DC Microbiol Res; 2017 Jul; 200():45-52. PubMed ID: 28527763 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of metal-tolerant plant growth-promoting yeast (Cryptococcus sp. NSE1) and its influence on Cd hyperaccumulator Sedum plumbizincicola. Liu W; Wang B; Wang Q; Hou J; Wu L; Wood JL; Luo Y; Franks AE Environ Sci Pollut Res Int; 2016 Sep; 23(18):18621-9. PubMed ID: 27306207 [TBL] [Abstract][Full Text] [Related]
17. Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Sachdev D; Nema P; Dhakephalkar P; Zinjarde S; Chopade B Microbiol Res; 2010 Oct; 165(8):627-38. PubMed ID: 20116982 [TBL] [Abstract][Full Text] [Related]
18. Increased iron-stress resilience of maize through inoculation of siderophore-producing Arthrobacter globiformis from mine. Sharma M; Mishra V; Rau N; Sharma RS J Basic Microbiol; 2016 Jul; 56(7):719-35. PubMed ID: 26632776 [TBL] [Abstract][Full Text] [Related]
19. Heavy metal-immobilizing bacteria increase the biomass and reduce the Cd and Pb uptake by pakchoi (Brassica chinensis L.) in heavy metal-contaminated soil. Han H; Cai H; Wang X; Hu X; Chen Z; Yao L Ecotoxicol Environ Saf; 2020 Jun; 195():110375. PubMed ID: 32200142 [TBL] [Abstract][Full Text] [Related]
20. Isolation and Characterization of Pb-Solubilizing Bacteria and Their Effects on Pb Uptake by Yahaghi Z; Shirvani M; Nourbakhsh F; de la Peña TC; Pueyo JJ; Talebi M J Microbiol Biotechnol; 2018 Jul; 28(7):1156-1167. PubMed ID: 29975995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]