BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32671376)

  • 1. Mechanical properties of subisostatic random networks composed of nonlinear fibers.
    Hatami-Marbini H; Rohanifar M
    Soft Matter; 2020 Aug; 16(30):7156-7164. PubMed ID: 32671376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Mechanical Properties of Prestressed Branched Fibrous Networks.
    Hatami-Marbini H; Rohanifar M
    Biophys J; 2021 Feb; 120(3):527-538. PubMed ID: 33412143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic regimes of subisostatic athermal fiber networks.
    Licup AJ; Sharma A; MacKintosh FC
    Phys Rev E; 2016 Jan; 93(1):012407. PubMed ID: 26871101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two fundamental mechanisms govern the stiffening of cross-linked networks.
    Žagar G; Onck PR; van der Giessen E
    Biophys J; 2015 Mar; 108(6):1470-1479. PubMed ID: 25809259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of the mechanical behavior of random fiber networks with different microstructure.
    Hatami-Marbini H
    Eur Phys J E Soft Matter; 2018 May; 41(5):65. PubMed ID: 29796730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress controls the mechanics of collagen networks.
    Licup AJ; Münster S; Sharma A; Sheinman M; Jawerth LM; Fabry B; Weitz DA; MacKintosh FC
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9573-8. PubMed ID: 26195769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber Network Models Predict Enhanced Cell Mechanosensing on Fibrous Gels.
    Aghvami M; Billiar KL; Sander EA
    J Biomech Eng; 2016 Oct; 138(10):1010061-10100611. PubMed ID: 27548709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffening of individual fibrin fibers equitably distributes strain and strengthens networks.
    Hudson NE; Houser JR; O'Brien ET; Taylor RM; Superfine R; Lord ST; Falvo MR
    Biophys J; 2010 Apr; 98(8):1632-40. PubMed ID: 20409484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load.
    Britton S; Kim O; Pancaldi F; Xu Z; Litvinov RI; Weisel JW; Alber M
    Acta Biomater; 2019 Aug; 94():514-523. PubMed ID: 31152942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocolloidal hydrogel mimics the structure and nonlinear mechanical properties of biological fibrous networks.
    Prince E; Morozova S; Chen Z; Adibnia V; Yakavets I; Panyukov S; Rubinstein M; Kumacheva E
    Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2220755120. PubMed ID: 38091296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-driven criticality underlies nonlinear mechanics of fibrous networks.
    Sharma A; Licup AJ; Rens R; Vahabi M; Jansen KA; Koenderink GH; MacKintosh FC
    Phys Rev E; 2016 Oct; 94(4-1):042407. PubMed ID: 27841637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive maps for stochastic nonaffine stiffening and damage in fibrous networks.
    Abhilash AS; Zhang L; Stiefel J; Purohit PK; Joshi SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022607. PubMed ID: 25353502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear effective-medium theory of disordered spring networks.
    Sheinman M; Broedersz CP; MacKintosh FC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021801. PubMed ID: 22463230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear Elasticity of the ECM Fibers Facilitates Efficient Intercellular Communication.
    Sopher RS; Tokash H; Natan S; Sharabi M; Shelah O; Tchaicheeyan O; Lesman A
    Biophys J; 2018 Oct; 115(7):1357-1370. PubMed ID: 30217380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural stiffening increases flaw tolerance of biological fibers.
    Giesa T; Pugno NM; Buehler MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041902. PubMed ID: 23214610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-Stiffening in Dynamic Supramolecular Fiber Networks.
    Fernández-Castaño Romera M; Lou X; Schill J; Ter Huurne G; Fransen PKH; Voets IK; Storm C; Sijbesma RP
    J Am Chem Soc; 2018 Dec; 140(50):17547-17555. PubMed ID: 30465604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear Mechanics of Athermal Branched Biopolymer Networks.
    Rens R; Vahabi M; Licup AJ; MacKintosh FC; Sharma A
    J Phys Chem B; 2016 Jul; 120(26):5831-41. PubMed ID: 26901575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-stabilized subisostatic fiber networks in a ropelike limit.
    Arzash S; Shivers JL; Licup AJ; Sharma A; MacKintosh FC
    Phys Rev E; 2019 Apr; 99(4-1):042412. PubMed ID: 31108669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks.
    Kurniawan NA; Wong LH; Rajagopalan R
    Biomacromolecules; 2012 Mar; 13(3):691-8. PubMed ID: 22293015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.