These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 32671620)
1. Expression level of Na Theerawitaya C; Samphumphuang T; Tisarum R; Siangliw M; Cha-Um S; Takabe T; Toojinda T Protoplasma; 2020 Nov; 257(6):1595-1606. PubMed ID: 32671620 [TBL] [Abstract][Full Text] [Related]
2. Expression levels of the Na Theerawitaya C; Tisarum R; Samphumphuang T; Takabe T; Cha-Um S Physiol Mol Biol Plants; 2020 Mar; 26(3):513-523. PubMed ID: 32205927 [TBL] [Abstract][Full Text] [Related]
3. Ionic selectivity and coordinated transport of Na Chakraborty K; Chattaopadhyay K; Nayak L; Ray S; Yeasmin L; Jena P; Gupta S; Mohanty SK; Swain P; Sarkar RK Planta; 2019 Nov; 250(5):1637-1653. PubMed ID: 31399792 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Na Chuamnakthong S; Nampei M; Ueda A Plant Sci; 2019 Oct; 287():110171. PubMed ID: 31481219 [TBL] [Abstract][Full Text] [Related]
5. Expression levels of genes involved in metal homeostasis, physiological adaptation, and growth characteristics of rice (Oryza sativa L.) genotypes under Fe and/or Al toxicity. Tisarum R; Pongprayoon W; Sithtisarn S; Sampumphuang T; Sotesaritkul T; Datta A; Singh HP; Cha-Um S Protoplasma; 2022 Jul; 259(4):1013-1028. PubMed ID: 34714403 [TBL] [Abstract][Full Text] [Related]
6. OsHKT1;5 mediates Na Kobayashi NI; Yamaji N; Yamamoto H; Okubo K; Ueno H; Costa A; Tanoi K; Matsumura H; Fujii-Kashino M; Horiuchi T; Nayef MA; Shabala S; An G; Ma JF; Horie T Plant J; 2017 Aug; 91(4):657-670. PubMed ID: 28488420 [TBL] [Abstract][Full Text] [Related]
7. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Horie T; Yoshida K; Nakayama H; Yamada K; Oiki S; Shinmyo A Plant J; 2001 Jul; 27(2):129-38. PubMed ID: 11489190 [TBL] [Abstract][Full Text] [Related]
8. Changes in Expression Level of Al Nayef M; Solis C; Shabala L; Ogura T; Chen Z; Bose J; Maathuis FJM; Venkataraman G; Tanoi K; Yu M; Zhou M; Horie T; Shabala S Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32664377 [TBL] [Abstract][Full Text] [Related]
9. Rice RCN1/OsABCG5 mutation alters accumulation of essential and nonessential minerals and causes a high Na/K ratio, resulting in a salt-sensitive phenotype. Matsuda S; Nagasawa H; Yamashiro N; Yasuno N; Watanabe T; Kitazawa H; Takano S; Tokuji Y; Tani M; Takamure I; Kato K Plant Sci; 2014 Jul; 224():103-11. PubMed ID: 24908511 [TBL] [Abstract][Full Text] [Related]
10. Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. Kader MA; Seidel T; Golldack D; Lindberg S J Exp Bot; 2006; 57(15):4257-68. PubMed ID: 17088362 [TBL] [Abstract][Full Text] [Related]
11. T-DNA Tagging-Based Gain-of-Function of OsHKT1;4 Reinforces Na Exclusion from Leaves and Stems but Triggers Na Toxicity in Roots of Rice Under Salt Stress. Oda Y; Kobayashi NI; Tanoi K; Ma JF; Itou Y; Katsuhara M; Itou T; Horie T Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29329278 [TBL] [Abstract][Full Text] [Related]
13. Expression levels of vacuolar ion homeostasis-related genes, Na Theerawitaya C; Tisarum R; Samphumphuang T; Singh HP; Takabe T; Cha-Um S Protoplasma; 2020 Mar; 257(2):525-536. PubMed ID: 31807913 [TBL] [Abstract][Full Text] [Related]
14. OsHKT1;4-mediated Na(+) transport in stems contributes to Na(+) exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. Suzuki K; Yamaji N; Costa A; Okuma E; Kobayashi NI; Kashiwagi T; Katsuhara M; Wang C; Tanoi K; Murata Y; Schroeder JI; Ma JF; Horie T BMC Plant Biol; 2016 Jan; 16():22. PubMed ID: 26786707 [TBL] [Abstract][Full Text] [Related]
15. OsHKT2;2/1-mediated Na(+) influx over K(+) uptake in roots potentially increases toxic Na(+) accumulation in a salt-tolerant landrace of rice Nona Bokra upon salinity stress. Suzuki K; Costa A; Nakayama H; Katsuhara M; Shinmyo A; Horie T J Plant Res; 2016 Jan; 129(1):67-77. PubMed ID: 26578190 [TBL] [Abstract][Full Text] [Related]
16. Exogenous SA Affects Rice Seed Germination under Salt Stress by Regulating Na Liu Z; Ma C; Hou L; Wu X; Wang D; Zhang L; Liu P Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328712 [TBL] [Abstract][Full Text] [Related]
17. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf. Prusty MR; Kim SR; Vinarao R; Entila F; Egdane J; Diaz MGQ; Jena KK Front Plant Sci; 2018; 9():417. PubMed ID: 29740456 [TBL] [Abstract][Full Text] [Related]
18. Genetics of yield component traits under salt stress at flowering stage and selection of salt tolerant pre-breeding lines for rice improvement. Pruthi R; Puram VRR; Ontoy J; Subudhi PK Genetica; 2022 Oct; 150(5):273-288. PubMed ID: 35838895 [TBL] [Abstract][Full Text] [Related]
19. Alleviation of Salt Stress in Upland Rice ( Tisarum R; Theerawitaya C; Samphumphuang T; Polispitak K; Thongpoem P; Singh HP; Cha-Um S Front Plant Sci; 2020; 11():348. PubMed ID: 32273880 [TBL] [Abstract][Full Text] [Related]
20. Melatonin improves K Yan F; Wei H; Li W; Liu Z; Tang S; Chen L; Ding C; Jiang Y; Ding Y; Li G Ecotoxicol Environ Saf; 2020 Dec; 206():111358. PubMed ID: 33007539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]