These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 32671853)
1. Use of potassium polyaspartate for stabilization of potassium bitartrate in wines: influence on colloidal stability and interactions with other additives and enological practices. Bosso A; Motta S; Panero L; Lucini S; Guaita M J Food Sci; 2020 Aug; 85(8):2406-2415. PubMed ID: 32671853 [TBL] [Abstract][Full Text] [Related]
2. Use of polyaspartate as inhibitor of tartaric precipitations in wines. Bosso A; Panero L; Petrozziello M; Sollazzo M; Asproudi A; Motta S; Guaita M Food Chem; 2015 Oct; 185():1-6. PubMed ID: 25952834 [TBL] [Abstract][Full Text] [Related]
3. Prevention of Tartrate Crystallization in Wine by Hydrocolloids: The Mechanism Studied by Dynamic Light Scattering. Lankhorst PP; Voogt B; Tuinier R; Lefol B; Pellerin P; Virone C J Agric Food Chem; 2017 Oct; 65(40):8923-8929. PubMed ID: 28972743 [TBL] [Abstract][Full Text] [Related]
4. Use of potassium polyaspartate on white wines: Interaction with proteins and aroma compounds. Natolino A; Tat L; Gallo A; Roman T; Celotti E Food Res Int; 2023 Jun; 168():112768. PubMed ID: 37120218 [TBL] [Abstract][Full Text] [Related]
5. Validation of a rapid conductimetric test for the measurement of wine tartaric stability. Bosso A; Motta S; Petrozziello M; Guaita M; Asproudi A; Panero L Food Chem; 2016 Dec; 212():821-7. PubMed ID: 27374600 [TBL] [Abstract][Full Text] [Related]
6. Efficiency of Alginic Acid, Sodium Carboxymethylcellulose, and Potassium Polyaspartate as Calcium Tartrate Stabilizers in Wines. Cosme F; Filipe-Ribeiro L; Coixão A; Bezerra M; Nunes FM Foods; 2024 Jun; 13(12):. PubMed ID: 38928821 [TBL] [Abstract][Full Text] [Related]
7. Wine Volatilome as Affected by Tartaric Stabilization Treatments: Cold Stabilization, Carboxymethylcellulose and Metatartaric Acid. Cosme F; Oliveira R; Filipe-Ribeiro L; Nunes FM Foods; 2024 Aug; 13(17):. PubMed ID: 39272500 [TBL] [Abstract][Full Text] [Related]
8. Evaluating Alternatives to Cold Stabilization in Wineries: The Use of Carboxymethyl Cellulose, Potassium Polyaspartate, Electrodialysis and Ion Exchange Resins. Martínez-Pérez MP; Bautista-Ortín AB; Durant V; Gómez-Plaza E Foods; 2020 Sep; 9(9):. PubMed ID: 32932844 [TBL] [Abstract][Full Text] [Related]
9. Comparison between different types of carboxylmethylcellulose and other oenological additives used for white wine tartaric stabilization. Guise R; Filipe-Ribeiro L; Nascimento D; Bessa O; Nunes FM; Cosme F Food Chem; 2014 Aug; 156():250-7. PubMed ID: 24629965 [TBL] [Abstract][Full Text] [Related]
10. Rosé Sparkling Wines: Influence of Winemaking Practices on the Phytochemical Polyphenol During Aging on Lees and Commercial Storage. Sartor S; Burin VM; Panceri CP; Dos Passos RR; Caliari V; Bordignon-Luiz MT J Food Sci; 2018 Nov; 83(11):2790-2801. PubMed ID: 30370927 [TBL] [Abstract][Full Text] [Related]
11. Effect of the prefermentative addition of five enological tannins on anthocyanins and color in red wines. Liu YX; Liang NN; Wang J; Pan QH; Duan CQ J Food Sci; 2013 Jan; 78(1):C25-30. PubMed ID: 23301601 [TBL] [Abstract][Full Text] [Related]
12. A novel solution to tartrate instability in white wines. Dabare PR; Reilly T; Mierczynski P; Bindon K; Vasilev K; Mierczynska-Vasilev A Food Chem; 2023 Oct; 422():136159. PubMed ID: 37146354 [TBL] [Abstract][Full Text] [Related]
13. Efficiency of carboxymethylcellulose in red wine tartaric stability: Effect on wine phenolic composition, chromatic characteristics and colouring matter stability. Filipe-Ribeiro L; Milheiro J; Guise R; Vilamarim R; Fraga JB; Martins-Gomes C; Nunes FM; Cosme F Food Chem; 2021 Oct; 360():129996. PubMed ID: 34010762 [TBL] [Abstract][Full Text] [Related]
14. Chemical, chromatic, and sensory attributes of 6 red wines produced with prefermentative cold soak. Casassa LF; Bolcato EA; Sari SE Food Chem; 2015 May; 174():110-8. PubMed ID: 25529659 [TBL] [Abstract][Full Text] [Related]
15. Influence of Protective Colloids on Calcium Tartrate Stability and the Astringency Perception in a Red Wine. Cisterna-Castillo M; Covarrubias JI; Medel-Marabolí M; Peña-Neira A; Gil I Cortiella M Foods; 2024 Sep; 13(19):. PubMed ID: 39410100 [TBL] [Abstract][Full Text] [Related]
16. Monitoring the effects and side-effects on wine colour and flavonoid composition of the combined post-fermentative additions of seeds and mannoproteins. Alcalde-Eon C; Ferreras-Charro R; Ferrer-Gallego R; Rivero FJ; Heredia FJ; Escribano-Bailón MT Food Res Int; 2019 Dec; 126():108650. PubMed ID: 31732037 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the impact of initial red wine composition on changes in color and anthocyanin content during bottle storage. Avizcuri JM; Sáenz-Navajas MP; Echávarri JF; Ferreira V; Fernández-Zurbano P Food Chem; 2016 Dec; 213():123-134. PubMed ID: 27451163 [TBL] [Abstract][Full Text] [Related]
18. Phenolic content and antioxidant activity of Primitivo wine: comparison among winemaking technologies. Baiano A; Terracone C; Gambacorta G; La Notte E J Food Sci; 2009 Apr; 74(3):C258-67. PubMed ID: 19397711 [TBL] [Abstract][Full Text] [Related]
19. Effect of different winemaking technologies on phenolic composition in Tinta Miúda red wines. Sun B; Spranger I; Roque-do-Vale F; Leandro C; Belchior P J Agric Food Chem; 2001 Dec; 49(12):5809-16. PubMed ID: 11743767 [TBL] [Abstract][Full Text] [Related]
20. Short- and long-term efficiency of carboxymethylcellulose (CMC) to prevent crystal formation in South African wine. Greeff AE; Robillard B; du Toit WJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(9):1374-85. PubMed ID: 22762479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]