These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
517 related articles for article (PubMed ID: 32671924)
21. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts. Strasser P Acc Chem Res; 2016 Nov; 49(11):2658-2668. PubMed ID: 27797179 [TBL] [Abstract][Full Text] [Related]
22. Unlocking Efficient Hydrogen Production: Nucleophilic Oxidation Reactions Coupled with Water Splitting. Wang P; Zheng J; Xu X; Zhang YQ; Shi QF; Wan Y; Ramakrishna S; Zhang J; Zhu L; Yokoshima T; Yamauchi Y; Long YZ Adv Mater; 2024 Aug; 36(35):e2404806. PubMed ID: 38857437 [TBL] [Abstract][Full Text] [Related]
23. Recent Trends in Synthesis and Investigation of Nickel Phosphide Compound/Hybrid-Based Electrocatalysts Towards Hydrogen Generation from Water Electrocatalysis. Khalafallah D; Zhi M; Hong Z Top Curr Chem (Cham); 2019 Oct; 377(6):29. PubMed ID: 31605243 [TBL] [Abstract][Full Text] [Related]
24. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Yang HB; Miao J; Hung SF; Chen J; Tao HB; Wang X; Zhang L; Chen R; Gao J; Chen HM; Dai L; Liu B Sci Adv; 2016 Apr; 2(4):e1501122. PubMed ID: 27152333 [TBL] [Abstract][Full Text] [Related]
25. Metal-Organic Frameworks and Metal-Organic Gels for Oxygen Electrocatalysis: Structural and Compositional Considerations. Wang H; Chen BH; Liu DJ Adv Mater; 2021 Jun; 33(25):e2008023. PubMed ID: 33984166 [TBL] [Abstract][Full Text] [Related]
26. Role of Strain and Conductivity in Oxygen Electrocatalysis on LaCoO3 Thin Films. Stoerzinger KA; Choi WS; Jeen H; Lee HN; Shao-Horn Y J Phys Chem Lett; 2015 Feb; 6(3):487-92. PubMed ID: 26261968 [TBL] [Abstract][Full Text] [Related]
27. Electrocatalysis in Solid Oxide Fuel Cells and Electrolyzers. Jang I; S A Carneiro J; Crawford JO; Cho YJ; Parvin S; Gonzalez-Casamachin DA; Baltrusaitis J; Lively RP; Nikolla E Chem Rev; 2024 Jul; 124(13):8233-8306. PubMed ID: 38885684 [TBL] [Abstract][Full Text] [Related]
28. Nanostructured Metal Borides for Energy-Related Electrocatalysis: Recent Progress, Challenges, and Perspectives. Pu Z; Liu T; Zhang G; Liu X; Gauthier MA; Chen Z; Sun S Small Methods; 2021 Oct; 5(10):e2100699. PubMed ID: 34927953 [TBL] [Abstract][Full Text] [Related]
29. Recent advances in MoS Li R; Liang J; Li T; Yue L; Liu Q; Luo Y; Hamdy MS; Sun Y; Sun X Chem Commun (Camb); 2022 Feb; 58(14):2259-2278. PubMed ID: 35060572 [TBL] [Abstract][Full Text] [Related]
30. Spin-Related Electron Transfer and Orbital Interactions in Oxygen Electrocatalysis. Sun Y; Sun S; Yang H; Xi S; Gracia J; Xu ZJ Adv Mater; 2020 Oct; 32(39):e2003297. PubMed ID: 32776367 [TBL] [Abstract][Full Text] [Related]
31. Challenges and Opportunities of Transition Metal Oxides as Electrocatalysts. Xiong W; Yin H; Wu T; Li H Chemistry; 2023 Jan; 29(5):e202202872. PubMed ID: 36372776 [TBL] [Abstract][Full Text] [Related]
32. Progress of Heterogeneous Iridium-Based Water Oxidation Catalysts. Gao J; Liu Y; Liu B; Huang KW ACS Nano; 2022 Nov; 16(11):17761-17777. PubMed ID: 36355040 [TBL] [Abstract][Full Text] [Related]
34. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Zhao D; Zhuang Z; Cao X; Zhang C; Peng Q; Chen C; Li Y Chem Soc Rev; 2020 Apr; 49(7):2215-2264. PubMed ID: 32133461 [TBL] [Abstract][Full Text] [Related]
35. Insights into the pH effect on hydrogen electrocatalysis. Cui WG; Gao F; Na G; Wang X; Li Z; Yang Y; Niu Z; Qu Y; Wang D; Pan H Chem Soc Rev; 2024 Oct; 53(20):10253-10311. PubMed ID: 39239864 [TBL] [Abstract][Full Text] [Related]
36. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony. Anantharaj S; Noda S Small; 2020 Jan; 16(2):e1905779. PubMed ID: 31823508 [TBL] [Abstract][Full Text] [Related]
37. Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Ghosh S; Basu RN Nanoscale; 2018 Jun; 10(24):11241-11280. PubMed ID: 29897365 [TBL] [Abstract][Full Text] [Related]
38. Hydrogen Evolution and Oxidation: Mechanistic Studies and Material Advances. Tian X; Zhao P; Sheng W Adv Mater; 2019 Aug; 31(31):e1808066. PubMed ID: 30932265 [TBL] [Abstract][Full Text] [Related]
39. Nanostructured Carbon-Nitrogen-Sulfur-Nickel Networks Derived From Polyaniline as Bifunctional Catalysts for Water Splitting. Djara R; Holade Y; Merzouki A; Lacour MA; Masquelez N; Flaud V; Cot D; Rebiere B; van der Lee A; Cambedouzou J; Huguet P; Tingry S; Cornu D Front Chem; 2020; 8():385. PubMed ID: 32509726 [TBL] [Abstract][Full Text] [Related]
40. Defects in Carbon-Based Materials for Electrocatalysis: Synthesis, Recognition, and Advances. Jia Y; Yao X Acc Chem Res; 2023 Apr; 56(8):948-958. PubMed ID: 36989384 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]