These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 32671967)
1. A Durable Ruddlesden-Popper Cathode for Protonic Ceramic Fuel Cells. Huan D; Zhang L; Li X; Xie Y; Shi N; Xue S; Xia C; Peng R; Lu Y ChemSusChem; 2020 Sep; 13(18):4994-5003. PubMed ID: 32671967 [TBL] [Abstract][Full Text] [Related]
2. Building Ruddlesden-Popper and Single Perovskite Nanocomposites: A New Strategy to Develop High-Performance Cathode for Protonic Ceramic Fuel Cells. Shi H; Su C; Xu X; Pan Y; Yang G; Ran R; Shao Z Small; 2021 Sep; 17(35):e2101872. PubMed ID: 34254432 [TBL] [Abstract][Full Text] [Related]
3. Enhanced Proton Conduction with Low Oxygen Vacancy Concentration and Favorable Hydration for Protonic Ceramic Fuel Cells Cathode. Wang X; Li W; Zhou C; Xu M; Hu Z; Pao CW; Zhou W; Shao Z ACS Appl Mater Interfaces; 2023 Jan; 15(1):1339-1347. PubMed ID: 36579819 [TBL] [Abstract][Full Text] [Related]
4. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Duan C; Tong J; Shang M; Nikodemski S; Sanders M; Ricote S; Almansoori A; O'Hayre R Science; 2015 Sep; 349(6254):1321-6. PubMed ID: 26217064 [TBL] [Abstract][Full Text] [Related]
5. A New Durable Surface Nanoparticles-Modified Perovskite Cathode for Protonic Ceramic Fuel Cells from Selective Cation Exsolution under Oxidizing Atmosphere. Liang M; Zhu Y; Song Y; Guan D; Luo Z; Yang G; Jiang SP; Zhou W; Ran R; Shao Z Adv Mater; 2022 Mar; 34(10):e2106379. PubMed ID: 34962667 [TBL] [Abstract][Full Text] [Related]
6. Reverse Atom Capture on Perovskite Surface Enabling Robust and Efficient Cathode for Protonic Ceramic Fuel Cells. Zhao S; Ma W; Wang W; Huang Y; Wang J; Wang S; Shu Z; He B; Zhao L Adv Mater; 2024 Jul; 36(27):e2405052. PubMed ID: 38652767 [TBL] [Abstract][Full Text] [Related]
7. Rational Design of Ruddlesden-Popper Perovskite Ferrites as Air Electrode for Highly Active and Durable Reversible Protonic Ceramic Cells. Yu N; Bello IT; Chen X; Liu T; Li Z; Song Y; Ni M Nanomicro Lett; 2024 Apr; 16(1):177. PubMed ID: 38647738 [TBL] [Abstract][Full Text] [Related]
8. Electrokinetic Insights into the Triple Ionic and Electronic Conductivity of a Novel Nanocomposite Functional Material for Protonic Ceramic Fuel Cells. Bello IT; Yu N; Song Y; Wang J; Chan TS; Zhao S; Li Z; Dai Y; Yu J; Ni M Small; 2022 Oct; 18(40):e2203207. PubMed ID: 36057991 [TBL] [Abstract][Full Text] [Related]
9. High-Performanced Cathode with a Two-Layered R-P Structure for Intermediate Temperature Solid Oxide Fuel Cells. Huan D; Wang Z; Wang Z; Peng R; Xia C; Lu Y ACS Appl Mater Interfaces; 2016 Feb; 8(7):4592-9. PubMed ID: 26859515 [TBL] [Abstract][Full Text] [Related]
10. Ultrafast Sintered Composite Cathode Incorporating a Negative Thermal Expansion Material for High-Performance Protonic Ceramic Fuel Cells. Tahir A; Belotti A; Song Y; Wang Y; Maradesa A; Li J; Tian Y; Ciucci F ACS Appl Mater Interfaces; 2024 Aug; 16(34):44645-44654. PubMed ID: 39149936 [TBL] [Abstract][Full Text] [Related]
12. A-Site Nonstoichiometric Ba Wei K; Guo Z; Chen F; Liu H; Ling Y ACS Appl Mater Interfaces; 2023 Oct; 15(42):49785-49793. PubMed ID: 37816140 [TBL] [Abstract][Full Text] [Related]
13. High-Temperature Protonic Conduction in La Chen L; Wang G; Toyoura K; Han D Small; 2024 Jul; 20(29):e2311473. PubMed ID: 38385829 [TBL] [Abstract][Full Text] [Related]
14. Surface Self-Assembly Protonation Triggering Triple-Conductive Heterostructure with Highly Enhanced Oxygen Reduction for Protonic Ceramic Fuel Cells. Zhang X; Song R; Huan D; Zhu K; Li X; Han H; Xia C; Peng R; Lu Y Small; 2022 Dec; 18(49):e2205190. PubMed ID: 36310135 [TBL] [Abstract][Full Text] [Related]
15. Advancements in Perovskite-Based Cathode Materials for Solid Oxide Fuel Cells: A Comprehensive Review. Samreen A; Ali MS; Huzaifa M; Ali N; Hassan B; Ullah F; Ali S; Arifin NA Chem Rec; 2024 Jan; 24(1):e202300247. PubMed ID: 37933973 [TBL] [Abstract][Full Text] [Related]
16. High-Performance Ammonia Protonic Ceramic Fuel Cells Using a Pd Inter-Catalyst. Jeong HJ; Chang W; Seo BG; Choi YS; Kim KH; Kim DH; Shim JH Small; 2023 Jun; 19(22):e2208149. PubMed ID: 36866499 [TBL] [Abstract][Full Text] [Related]
17. Oxygen-Deficient Ruddlesden-Popper-Type Lanthanum Strontium Cuprate Doped with Bismuth as a Cathode for Solid Oxide Fuel Cells. Hu X; Li M; Xie Y; Yang Y; Wu X; Xia C ACS Appl Mater Interfaces; 2019 Jun; 11(24):21593-21602. PubMed ID: 31150195 [TBL] [Abstract][Full Text] [Related]
18. Operation Protocols To Improve Durability of Protonic Ceramic Fuel Cells. Park KY; Kim YD; Lee JI; Saqib M; Shin JS; Seo Y; Kim JH; Lim HT; Park JY ACS Appl Mater Interfaces; 2019 Jan; 11(1):457-468. PubMed ID: 30525425 [TBL] [Abstract][Full Text] [Related]
19. Facile Deficiency Engineering in a Cobalt-Free Perovskite Air Electrode to Achieve Enhanced Performance for Protonic Ceramic Fuel Cells. Ye Q; Ye H; Ma Z; Lin H; Zhao B; Yang G; Dong F; Ni M; Lin Z; Zhang S Small; 2024 Jul; 20(28):e2307900. PubMed ID: 38334199 [TBL] [Abstract][Full Text] [Related]
20. A Cobalt-Free Multi-Phase Nanocomposite as Near-Ideal Cathode of Intermediate-Temperature Solid Oxide Fuel Cells Developed by Smart Self-Assembly. Song Y; Chen Y; Xu M; Wang W; Zhang Y; Yang G; Ran R; Zhou W; Shao Z Adv Mater; 2020 Feb; 32(8):e1906979. PubMed ID: 31944435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]