These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 32671967)
21. Improved mechanical strength, proton conductivity and power density in an 'all-protonic' ceramic fuel cell at intermediate temperature. Azad AK; Abdalla AM; Afif A; Azad A; Afroze S; Idris AC; Park JY; Saqib M; Radenahmad N; Hossain S; Elius IB; Al-Mamun M; Zaini J; Al-Hinai A; Reza MS; Irvine JTS Sci Rep; 2021 Sep; 11(1):19382. PubMed ID: 34588598 [TBL] [Abstract][Full Text] [Related]
22. Structural Engineering of Cobalt-Free Perovskite Enables Efficient and Durable Oxygen Reduction in Solid Oxide Fuel Cells. Dong F; Ma Z; Ye Q; Zhang B; Li L; Yang G; Ni M; Lin Z Small Methods; 2022 Jun; 6(6):e2200292. PubMed ID: 35466581 [TBL] [Abstract][Full Text] [Related]
23. Realizing Simultaneous Detrimental Reactions Suppression and Multiple Benefits Generation from Nickel Doping toward Improved Protonic Ceramic Fuel Cell Performance. Song Y; Chen J; Yang M; Xu M; Liu D; Liang M; Wang Y; Ran R; Wang W; Ciucci F; Shao Z Small; 2022 Apr; 18(16):e2200450. PubMed ID: 35277919 [TBL] [Abstract][Full Text] [Related]
24. Effect of calcium doping on the electrocatalytic activity of the Bi Wang L; Xia T; Sun L; Li Q; Zhao H RSC Adv; 2023 Jan; 13(4):2339-2344. PubMed ID: 36741133 [TBL] [Abstract][Full Text] [Related]
25. Self-Assembled Ruddlesden-Popper/Perovskite Hybrid with Lattice-Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst. Zhu Y; Lin Q; Hu Z; Chen Y; Yin Y; Tahini HA; Lin HJ; Chen CT; Zhang X; Shao Z; Wang H Small; 2020 May; 16(20):e2001204. PubMed ID: 32309914 [TBL] [Abstract][Full Text] [Related]
26. Compositional Engineering of Rioja-Monllor L; Bernuy-Lopez C; Fontaine ML; Grande T; Einarsrud MA Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31640202 [TBL] [Abstract][Full Text] [Related]
27. Boosting the Electrochemical Performance of Fe-Based Layered Double Perovskite Cathodes by Zn Ren R; Wang Z; Meng X; Xu C; Qiao J; Sun W; Sun K ACS Appl Mater Interfaces; 2020 May; 12(21):23959-23967. PubMed ID: 32352274 [TBL] [Abstract][Full Text] [Related]
28. Superior Performance as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells of the Ruddlesden-Popper Muñoz Gil D; Boulahya K; Santamaria Santoyo M; Azcondo MT; Amador U Inorg Chem; 2021 Mar; 60(5):3094-3105. PubMed ID: 33586955 [TBL] [Abstract][Full Text] [Related]
29. Advanced Proton-Conducting Ceramics Based on Layered Perovskite BaLaInO Tarasova N; Bedarkova A Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234182 [TBL] [Abstract][Full Text] [Related]
30. Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells. Zhu Y; Zhou W; Ran R; Chen Y; Shao Z; Liu M Nano Lett; 2016 Jan; 16(1):512-8. PubMed ID: 26619096 [TBL] [Abstract][Full Text] [Related]
31. New mechanistic insight into the oxygen reduction reaction on Ruddlesden-Popper cathodes for intermediate-temperature solid oxide fuel cells. Li W; Guan B; Zhang X; Yan J; Zhou Y; Liu X Phys Chem Chem Phys; 2016 Mar; 18(12):8502-11. PubMed ID: 26939545 [TBL] [Abstract][Full Text] [Related]
32. Synergistic Bulk and Surface Engineering for Expeditious and Durable Reversible Protonic Ceramic Electrochemical Cells Air Electrode. Chen X; Yu N; Song Y; Liu T; Xu H; Guan D; Li Z; Huang WH; Shao Z; Ciucci F; Ni M Adv Mater; 2024 Aug; 36(32):e2403998. PubMed ID: 38801699 [TBL] [Abstract][Full Text] [Related]
33. Efficient Oxygen Electrocatalysis by Nanostructured Mixed-Metal Oxides. Gu XK; Carneiro JSA; Samira S; Das A; Ariyasingha NM; Nikolla E J Am Chem Soc; 2018 Jul; 140(26):8128-8137. PubMed ID: 29847727 [TBL] [Abstract][Full Text] [Related]
34. Controlling Oxygen Mobility in Ruddlesden-Popper Oxides. Lee D; Lee HN Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772732 [TBL] [Abstract][Full Text] [Related]
35. Designing a protonic ceramic fuel cell with novel electrochemically active oxygen electrodes based on doped Nd Lyagaeva J; Danilov N; Tarutin A; Vdovin G; Medvedev D; Demin A; Tsiakaras P Dalton Trans; 2018 Jun; 47(24):8149-8157. PubMed ID: 29881842 [TBL] [Abstract][Full Text] [Related]
36. Self-Construction of Efficient Interfaces Ensures High-Performance Direct Ammonia Protonic Ceramic Fuel Cells. He F; Hou M; Du Z; Zhu F; Cao X; Ding Y; Zhou Y; Liu M; Chen Y Adv Mater; 2023 Oct; 35(42):e2304957. PubMed ID: 37640369 [TBL] [Abstract][Full Text] [Related]
37. Materials A Tarasova N; Animitsa I Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009259 [TBL] [Abstract][Full Text] [Related]
38. Deconvolution of Water-Splitting on the Triple-Conducting Ruddlesden-Popper-Phase Anode for Protonic Ceramic Electrolysis Cells. Tian H; Li W; Ma L; Yang T; Guan B; Shi W; Kalapos TL; Liu X ACS Appl Mater Interfaces; 2020 Nov; 12(44):49574-49585. PubMed ID: 33079527 [TBL] [Abstract][Full Text] [Related]
39. An Unbalanced Battle in Excellence: Revealing Effect of Ni/Co Occupancy on Water Splitting and Oxygen Reduction Reactions in Triple-Conducting Oxides for Protonic Ceramic Electrochemical Cells. Tang W; Ding H; Bian W; Regalado Vera CY; Gomez JY; Dong Y; Li J; Wu W; Fan W; Zhou M; Gore C; Blackburn BM; Luo H; Ding D Small; 2022 Jul; 18(30):e2201953. PubMed ID: 35768285 [TBL] [Abstract][Full Text] [Related]
40. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Ding H; Wu W; Jiang C; Ding Y; Bian W; Hu B; Singh P; Orme CJ; Wang L; Zhang Y; Ding D Nat Commun; 2020 Apr; 11(1):1907. PubMed ID: 32312963 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]