These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3267202)

  • 21. Postsynaptic potentials and morphological features of tectal cells in homing pigeons.
    Wu GY; Wang SR; Yan K
    Sci China B; 1993 Mar; 36(3):297-304. PubMed ID: 8397800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activity-driven sharpening of the retinotectal projection in goldfish: development under stroboscopic illumination prevents sharpening.
    Schmidt JT; Buzzard M
    J Neurobiol; 1993 Mar; 24(3):384-99. PubMed ID: 7684064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light-evoked oscillatory discharges in retinal ganglion cells are generated by rhythmic synaptic inputs.
    Arai I; Yamada Y; Asaka T; Tachibana M
    J Neurophysiol; 2004 Aug; 92(2):715-25. PubMed ID: 15277593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of the normal and regenerated retinotectal pathways of goldfish.
    Stuermer CA; Easter SS
    J Comp Neurol; 1984 Feb; 223(1):57-76. PubMed ID: 6200514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of the retinotectal projection in the chicken.
    Rager GH
    Adv Anat Embryol Cell Biol; 1980; 63():I-VIII, 1-90. PubMed ID: 7457227
    [No Abstract]   [Full Text] [Related]  

  • 26. Synaptic development of regenerating retinotectal projection of goldfish.
    Matsumoto N
    Acta Biol Hung; 1988; 39(2-3):197-200. PubMed ID: 3257021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Postsynaptic potentials and morphology of tectal cells responding to electrical stimulation of the bullfrog nucleus isthmi.
    Wang SR; Matsumoto N
    Vis Neurosci; 1990 Nov; 5(5):479-88. PubMed ID: 2288896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid BDNF-induced retrograde synaptic modification in a developing retinotectal system.
    Du JL; Poo MM
    Nature; 2004 Jun; 429(6994):878-83. PubMed ID: 15215865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synaptic mechanisms of directional selectivity in ganglion cells of frog retina as revealed by intracellular recordings.
    Watanabe S; Murakami M
    Jpn J Physiol; 1984; 34(3):497-511. PubMed ID: 6333540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An intracellular study of pretectal influence on the optic tectum of the frog, Rana catesbeiana.
    Kang HJ; Li XH
    Neurosci Bull; 2007 Mar; 23(2):113-8. PubMed ID: 17592534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency-dependent properties of inhibitory synapses in the rostral nucleus of the solitary tract.
    Grabauskas G; Bradley RM
    J Neurophysiol; 2003 Jan; 89(1):199-211. PubMed ID: 12522172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Columnar organization of the optic tectum in the frog.
    Lázár G
    Acta Biol Hung; 1988; 39(2-3):211-6. PubMed ID: 3267201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuromodulatory effects of gonadotropin-releasing hormone on retinotectal synaptic transmission in the optic tectum of rainbow trout.
    Kinoshita M; Kobayashi S; Urano A; Ito E
    Eur J Neurosci; 2007 Jan; 25(2):480-4. PubMed ID: 17284189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracellular and current source density analyses of somatosensory input to the optic tectum of the frog.
    Tsurudome K; Li X; Matsumoto N
    Brain Res; 2005 Dec; 1064(1-2):32-41. PubMed ID: 16289401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synaptic transmission of excitation from the retina to cells in the pigeon's optic tectum.
    Leresche N; Hardy O; Audinat E; Jassik-Gerschenfeld D
    Brain Res; 1986 Feb; 365(1):138-44. PubMed ID: 3004653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organization and synaptic connections of cholinergic fibers in the cat superior colliculus.
    Jeon CJ; Spencer RF; Mize RR
    J Comp Neurol; 1993 Jul; 333(3):360-74. PubMed ID: 8349848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intracellular analysis of directional sensitivity of tectal neurons of the frog.
    Hoshino N; Matsumoto N
    Brain Res; 2003 Mar; 966(2):185-93. PubMed ID: 12618342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anomalous uncrossed retinal projections fail to activate superior colliculus neurons in rabbits unilaterally enucleated by fetal surgery.
    Chow KL; Ostrach LH; Crabtree JW; Bernegger O; Baumbach HD; Lawson R
    J Comp Neurol; 1981 Feb; 196(2):189-204. PubMed ID: 7217354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of functional retinotectal connections in co-cultures of fetal mouse explants.
    Smalheiser NR; Crain SM
    Brain Res; 1978 Jun; 148(2):484-92. PubMed ID: 207390
    [No Abstract]   [Full Text] [Related]  

  • 40. Roles of periventricular neurons in retinotectal transmission in the optic tectum.
    Kinoshita M; Ito E
    Prog Neurobiol; 2006 Jun; 79(2):112-21. PubMed ID: 16901616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.