These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 32672167)
21. Hyperspectral-based Estimation of Leaf Nitrogen Content in Corn Using Optimal Selection of Multiple Spectral Variables. Fan L; Zhao J; Xu X; Liang D; Yang G; Feng H; Yang H; Wang Y; Chen G; Wei P Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31262053 [TBL] [Abstract][Full Text] [Related]
22. Effects of long-term fertilization practices on heavy metal cadmium accumulation in the surface soil and rice plants of double-cropping rice system in Southern China. Xu Y; Tang H; Liu T; Li Y; Huang X; Pi J Environ Sci Pollut Res Int; 2018 Jul; 25(20):19836-19844. PubMed ID: 29737483 [TBL] [Abstract][Full Text] [Related]
23. Predicting leaf nitrogen content in wolfberry trees by hyperspectral transformation and machine learning for precision agriculture. Li Y; Wang H; Zhao H; Zhang L PLoS One; 2024; 19(9):e0306851. PubMed ID: 39325703 [TBL] [Abstract][Full Text] [Related]
24. Comparison of prediction power of three multivariate calibrations for estimation of leaf anthocyanin content with visible spectroscopy in Liu X; Liu C; Shi Z; Chang Q PeerJ; 2019; 7():e7997. PubMed ID: 31687285 [TBL] [Abstract][Full Text] [Related]
25. Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery. Yang B; Ma J; Yao X; Cao W; Zhu Y Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477350 [TBL] [Abstract][Full Text] [Related]
26. Spectroscopy based novel spectral indices, PCA- and PLSR-coupled machine learning models for salinity stress phenotyping of rice. Das B; Manohara KK; Mahajan GR; Sahoo RN Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117983. PubMed ID: 31896051 [TBL] [Abstract][Full Text] [Related]
27. Nondestructive nitrogen content estimation in tomato plant leaves by Vis-NIR hyperspectral imaging and regression data models. Pourdarbani R; Sabzi S; Rohban MH; GarcĂa-Mateos G; Arribas JI Appl Opt; 2021 Oct; 60(30):9560-9569. PubMed ID: 34807100 [TBL] [Abstract][Full Text] [Related]
28. [Application of Hyperspectral Imaging for Visualization of Nitrogen Content in Pepper Leaf with Different Positions]. Yu KQ; Zhao YR; Li XL; Ding XB; Zhuang ZC; He Y Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):746-50. PubMed ID: 26117891 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer. Sun J; Shi S; Gong W; Yang J; Du L; Song S; Chen B; Zhang Z Sci Rep; 2017 Jan; 7():40362. PubMed ID: 28091610 [TBL] [Abstract][Full Text] [Related]
30. [Winter wheat GPC estimation based on leaf and canopy chlorophyll parameters]. Song XY; Wang JH; Yang GJ; Cui B; Chang H Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1917-21. PubMed ID: 25269308 [TBL] [Abstract][Full Text] [Related]
31. Study of moisture content and water activity of rice using fluorescence spectroscopy and multivariate analysis. Ozbekova Z; Kulmyrzaev A Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117357. PubMed ID: 31306962 [TBL] [Abstract][Full Text] [Related]
32. Principal component analysis-multivariate adaptive regression splines (PCA-MARS) and back propagation-artificial neural network (BP-ANN) methods for predicting the efficiency of oxidative desulfurization systems using ATR-FTIR spectroscopy. Sadrara M; Khorrami MK Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 300():122944. PubMed ID: 37269660 [TBL] [Abstract][Full Text] [Related]
33. Estimation of leaf nitrogen content from spectral characteristics of rice canopy. Yang CM ScientificWorldJournal; 2001 Dec; 1 Suppl 2():81-9. PubMed ID: 12805736 [TBL] [Abstract][Full Text] [Related]
34. Estimation of Vertical Leaf Nitrogen Distribution Within a Rice Canopy Based on Hyperspectral Data. He J; Zhang X; Guo W; Pan Y; Yao X; Cheng T; Zhu Y; Cao W; Tian Y Front Plant Sci; 2019; 10():1802. PubMed ID: 32117352 [TBL] [Abstract][Full Text] [Related]
35. Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics. Liu W; Liu C; Hu X; Yang J; Zheng L Food Chem; 2016 Nov; 210():415-21. PubMed ID: 27211665 [TBL] [Abstract][Full Text] [Related]
36. Using an optimal CC-PLSR-RBFNN model and NIR spectroscopy for the starch content determination in corn. Jiang H; Lu J Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 196():131-140. PubMed ID: 29444495 [TBL] [Abstract][Full Text] [Related]
37. Monitoring ratio of carbon to nitrogen (C/N) in wheat and barley leaves by using spectral slope features with branch-and-bound algorithm. Xu X; Yang G; Yang X; Li Z; Feng H; Xu B; Zhao X Sci Rep; 2018 Jul; 8(1):10034. PubMed ID: 29968798 [TBL] [Abstract][Full Text] [Related]
38. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards. Wang J; Shen C; Liu N; Jin X; Fan X; Dong C; Xu Y Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28282884 [TBL] [Abstract][Full Text] [Related]
39. Estimation of paddy rice leaf area index using machine learning methods based on hyperspectral data from multi-year experiments. Wang L; Chang Q; Yang J; Zhang X; Li F PLoS One; 2018; 13(12):e0207624. PubMed ID: 30517144 [TBL] [Abstract][Full Text] [Related]
40. Quick Test for Transgenic Components in Rice Using Terahertz Spectra. Ju XG; Zhang Y; Lian FY; Fu MX Appl Spectrosc; 2019 Feb; 73(2):171-181. PubMed ID: 30345786 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]