These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 32672248)
1. Performance studies of new optics for the time-of-flight detector of the AFP project. Nozka L; Brandt A; Cerny K; Hrabovsky M; Komarek T; Krizek F; Mandat D; Milovanovic M; Rijssenbeek M; Schovanek P; Sykora T; Urbasek V; Zatloukal J Opt Express; 2020 Jun; 28(13):19783-19796. PubMed ID: 32672248 [TBL] [Abstract][Full Text] [Related]
2. Upgraded Cherenkov time-of-flight detector for the AFP project. Nozka L; Avoni G; Banas E; Brandt A; Cerny K; Davis PM; Duarte Pinto S; Georgiev V; Hrabovsky M; Komarek T; Korcyl K; Lopez-Paz I; Milovanovic M; Mladenovic G; Orlov DA; Rijssenbeek M; Schovanek P; Sykora T; Trzebinski M; Urbasek V; Zich J Opt Express; 2023 Jan; 31(3):3998-4014. PubMed ID: 36785378 [TBL] [Abstract][Full Text] [Related]
3. Timing resolution studies of the optical part of the AFP Time-of-flight detector. Chytka L; Avoni G; Brandt A; Cavallaro E; Davis PM; Förster F; Hrabovsky M; Huang Y; Jirakova K; Kocian M; Komarek T; Korcyl K; Lange J; Michalek V; Nozka L; Paz IL; Rijssenbeek M; Schovanek P; Sykora T; Urbasek V Opt Express; 2018 Apr; 26(7):8028-8039. PubMed ID: 29715776 [TBL] [Abstract][Full Text] [Related]
4. Construction of the optical part of a time-of-flight detector prototype for the AFP detector. Nozka L; Adamczyk L; Avoni G; Brandt A; Buglewicz P; Cavallaro E; Chiodini G; Chytka L; Ciesla K; Davis PM; Dyndal M; Grinstein S; Hamal P; Hrabovsky M; Janas K; Jirakova K; Kocian M; Komarek T; Korcyl K; Lange J; Mandat D; Michalek V; Paz IL; Northacker D; Rijssenbeek M; Seabra L; Schovanek P; Staszewski R; Swierska P; Sykora T Opt Express; 2016 Nov; 24(24):27951-27960. PubMed ID: 27906363 [TBL] [Abstract][Full Text] [Related]
5. Design of Cherenkov bars for the optical part of the time-of-flight detector in Geant4. Nozka L; Brandt A; Rijssenbeek M; Sykora T; Hoffman T; Griffiths J; Steffens J; Hamal P; Chytka L; Hrabovsky M Opt Express; 2014 Nov; 22(23):28984-96. PubMed ID: 25402137 [TBL] [Abstract][Full Text] [Related]
6. Direct Observation of Incoherent Cherenkov Diffraction Radiation in the Visible Range. Kieffer R; Bartnik L; Bergamaschi M; Bleko VV; Billing M; Bobb L; Conway J; Forster M; Karataev P; Konkov AS; Jones RO; Lefevre T; Markova JS; Mazzoni S; Padilla Fuentes Y; Potylitsyn AP; Shanks J; Wang S Phys Rev Lett; 2018 Aug; 121(5):054802. PubMed ID: 30118307 [TBL] [Abstract][Full Text] [Related]
7. A fused silica Cherenkov radiator for high precision time-of-flight measurement of DT Moore AS; Schlossberg DJ; Hartouni EP; Sayre D; Eckart MJ; Hatarik R; Barbosa F; Root J; Waltz C; Beeman B; Rubery MS; Grim GP Rev Sci Instrum; 2018 Oct; 89(10):10I120. PubMed ID: 30399816 [TBL] [Abstract][Full Text] [Related]
8. CHERENCUBE: concept definition and implementation challenges of a Cherenkov-based detector block for PET. Somlai-Schweiger I; Ziegler SI Med Phys; 2015 Apr; 42(4):1825-35. PubMed ID: 25832073 [TBL] [Abstract][Full Text] [Related]
9. Cherenkov radiation-based three-dimensional position-sensitive PET detector: A Monte Carlo study. Ota R; Yamada R; Moriya T; Hasegawa T Med Phys; 2018 May; 45(5):1999-2008. PubMed ID: 29509969 [TBL] [Abstract][Full Text] [Related]
10. Particle damage sources for fused silica optics and their mitigation on high energy laser systems. Bude J; Carr CW; Miller PE; Parham T; Whitman P; Monticelli M; Raman R; Cross D; Welday B; Ravizza F; Suratwala T; Davis J; Fischer M; Hawley R; Lee H; Matthews M; Norton M; Nostrand M; VanBlarcom D; Sommer S Opt Express; 2017 May; 25(10):11414-11435. PubMed ID: 28788823 [TBL] [Abstract][Full Text] [Related]
11. Cherenkov emission-based external radiotherapy dosimetry: I. Formalism and feasibility. Zlateva Y; Muir BR; El Naqa I; Seuntjens JP Med Phys; 2019 May; 46(5):2370-2382. PubMed ID: 31034637 [TBL] [Abstract][Full Text] [Related]
12. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET. Brunner SE; Schaart DR Phys Med Biol; 2017 Jun; 62(11):4421-4439. PubMed ID: 28358722 [TBL] [Abstract][Full Text] [Related]
13. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices. Plyusnin VV; Jakubowski L; Zebrowski J; Duarte P; Malinowski K; Fernandes H; Silva C; Rabinski M; Sadowski MJ Rev Sci Instrum; 2012 Aug; 83(8):083505. PubMed ID: 22938292 [TBL] [Abstract][Full Text] [Related]
16. Subsurface defects of fused silica optics and laser induced damage at 351 nm. Hongjie L; Jin H; Fengrui W; Xinda Z; Xin Y; Xiaoyan Z; Laixi S; Xiaodong J; Zhan S; Wanguo Z Opt Express; 2013 May; 21(10):12204-17. PubMed ID: 23736441 [TBL] [Abstract][Full Text] [Related]
17. A novel single-ended readout depth-of-interaction PET detector fabricated using sub-surface laser engraving. Uchida H; Sakai T; Yamauchi H; Hakamata K; Shimizu K; Yamashita T Phys Med Biol; 2016 Sep; 61(18):6635-6650. PubMed ID: 27541440 [TBL] [Abstract][Full Text] [Related]
18. Coincidence time resolution of 30 ps FWHM using a pair of Cherenkov-radiator-integrated MCP-PMTs. Ota R; Nakajima K; Ogawa I; Tamagawa Y; Shimoi H; Suyama M; Hasegawa T Phys Med Biol; 2019 Mar; 64(7):07LT01. PubMed ID: 30870825 [TBL] [Abstract][Full Text] [Related]
19. Transformation optics beyond the manipulation of light trajectories. Ginis V; Tassin P Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2049):. PubMed ID: 26217057 [TBL] [Abstract][Full Text] [Related]
20. Development of a dual-ended readout detector with segmented crystal bars made using a subsurface laser engraving technique. Mohammadi A; Yoshida E; Nishikido F; Nitta M; Shimizu K; Sakai T; Yamaya T Phys Med Biol; 2018 Jan; 63(2):025019. PubMed ID: 29176052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]