BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32672270)

  • 1. Detection of Saccharomyces cerevisiae by silver nanoparticles sensitized with various lectins.
    Gyurjyan QG; Mikaelyan MV; Poghosyan GG; Hovhannisyan VA; Gasparyan VK
    Anal Methods; 2020 Jul; 12(27):3508-3512. PubMed ID: 32672270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheat germ agglutinin and Lens culinaris agglutinin sensitized anisotropic silver nanoparticles in detection of bacteria: A simple photometric assay.
    Mikaelyan MV; Poghosyan GG; Hendrickson OD; Dzantiev BB; Gasparyan VK
    Anal Chim Acta; 2017 Aug; 981():80-85. PubMed ID: 28693732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lectin sensitized anisotropic silver nanoparticles for detection of some bacteria.
    Gasparyan VK; Bazukyan IL
    Anal Chim Acta; 2013 Mar; 766():83-7. PubMed ID: 23427804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of silver nanoparticles and CdSe quantum dots sensitized with of C-like lectin for detection of St. aureus. Comparison of various approaches.
    Hovhannisyan VA; Bazukyan IL; Gasparyan VK
    Talanta; 2017 Dec; 175():366-369. PubMed ID: 28842004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae.
    Korbekandi H; Mohseni S; Mardani Jouneghani R; Pourhossein M; Iravani S
    Artif Cells Nanomed Biotechnol; 2016; 44(1):235-9. PubMed ID: 25101816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH on the extra cellular synthesis of gold and silver nanoparticles by Saccharomyces cerevisae.
    Lim HA; Mishra A; Yun SI
    J Nanosci Nanotechnol; 2011 Jan; 11(1):518-22. PubMed ID: 21446488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchrotron FTIR microspectroscopy of the yeast Saccharomyces cerevisiae after exposure to plasma-deposited nanosilver-containing coating.
    Saulou C; Jamme F; Maranges C; Fourquaux I; Despax B; Raynaud P; Dumas P; Mercier-Bonin M
    Anal Bioanal Chem; 2010 Feb; 396(4):1441-50. PubMed ID: 20012742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global gene response in Saccharomyces cerevisiae exposed to silver nanoparticles.
    Niazi JH; Sang BI; Kim YS; Gu MB
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1278-91. PubMed ID: 21409410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling of the toxicity mechanisms of coated and uncoated silver nanoparticles to yeast Saccharomyces cerevisiae BY4741 using a set of its 9 single-gene deletion mutants defective in oxidative stress response, cell wall or membrane integrity and endocytosis.
    Käosaar S; Kahru A; Mantecca P; Kasemets K
    Toxicol In Vitro; 2016 Sep; 35():149-62. PubMed ID: 27260961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. As(V) removal using carbonized yeast cells containing silver nanoparticles.
    Selvakumar R; Jothi NA; Jayavignesh V; Karthikaiselvi K; Antony GI; Sharmila PR; Kavitha S; Swaminathan K
    Water Res; 2011 Jan; 45(2):583-92. PubMed ID: 20947119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of differently sized and charged silver nanoparticles to yeast
    Kasemets K; Käosaar S; Vija H; Fascio U; Mantecca P
    Nanotoxicology; 2019 Oct; 13(8):1041-1059. PubMed ID: 31107118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical determination of carbohydrate-binding proteins using carbohydrate-stabilized gold nanoparticles and silver enhancement.
    Min IH; Choi L; Ahn KS; Kim BK; Lee BY; Kim KS; Choi HN; Lee WY
    Biosens Bioelectron; 2010 Dec; 26(4):1326-31. PubMed ID: 20685103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc oxide and silver nanoparticles toxicity in the baker's yeast, Saccharomyces cerevisiae.
    Galván Márquez I; Ghiyasvand M; Massarsky A; Babu M; Samanfar B; Omidi K; Moon TW; Smith ML; Golshani A
    PLoS One; 2018; 13(3):e0193111. PubMed ID: 29554091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green synthesis of silver nanoparticles: Advantages of the yeast
    Niknejad F; Nabili M; Daie Ghazvini R; Moazeni M
    Curr Med Mycol; 2015 Sep; 1(3):17-24. PubMed ID: 28680992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of pyrophosphate and sulfate using polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles.
    Terenteva EA; Apyari VV; Dmitrienko SG; Garshev AV; Volkov PA; Zolotov YA
    Talanta; 2018 Apr; 180():346-351. PubMed ID: 29332821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-Free Silver Nanoparticles for the Determination of Gentamicin.
    Li L; Gu Y; Chen Q; Wu P; Li N; Chen R; He H
    J Nanosci Nanotechnol; 2018 Jul; 18(7):4501-4506. PubMed ID: 29442625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Living fungi cells encapsulated in polyelectrolyte shells doped with metal nanoparticles.
    Fakhrullin RF; Zamaleeva AI; Morozov MV; Tazetdinova DI; Alimova FK; Hilmutdinov AK; Zhdanov RI; Kahraman M; Culha M
    Langmuir; 2009 Apr; 25(8):4628-34. PubMed ID: 19239251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic silver nanoparticles sensitized by oxidized lipoproteins for detection of appropriate antibodies.
    Poghosyan GG; Mikaelyan MV; Gasparyan VK
    Talanta; 2019 Mar; 194():977-979. PubMed ID: 30609631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine.
    Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A
    J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.