These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32672295)

  • 41. Step-wise induction, amplification and inversion of molecular chirality through the coordination of chiral diamines with Zn(II) bisporphyrin.
    Ikbal SA; Brahma S; Rath SP
    Chem Commun (Camb); 2015 Jan; 51(5):895-8. PubMed ID: 25431811
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Supramolecular chirogenesis in bis(zinc porphyrin): An absolute configuration probe highly sensitive to guest structure.
    Borovkov VV; Lintuluoto JM; Inoue Y
    Org Lett; 2000 Jun; 2(11):1565-8. PubMed ID: 10841480
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of Chirality on Cell Spreading and Differentiation: From Chiral Molecules to Chiral Self-Assembly.
    Dou X; Wu B; Liu J; Zhao C; Qin M; Wang Z; Schönherr H; Feng C
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38568-38577. PubMed ID: 31584794
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Porous metal-organic frameworks for heterogeneous biomimetic catalysis.
    Zhao M; Ou S; Wu CD
    Acc Chem Res; 2014 Apr; 47(4):1199-207. PubMed ID: 24499017
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of complex stoichiometry in supramolecular chirality transfer to zinc bisporphyrin systems.
    Etxebarria J; Vidal-Ferran A; Ballester P
    Chem Commun (Camb); 2008 Dec; (45):5939-41. PubMed ID: 19030545
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.
    Moriuchi T; Hirao T
    Acc Chem Res; 2010 Jul; 43(7):1040-51. PubMed ID: 20377253
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zinc porphyrin tweezer in host-guest complexation: determination of absolute configurations of primary monoamines by circular dichroism.
    Huang X; Borhan B; Rickman BH; Nakanishi K; Berova N
    Chemistry; 2000 Jan; 6(2):216-24. PubMed ID: 11931101
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Absolute configurational assignments of secondary amines by CD-sensitive dimeric zinc porphyrin host.
    Huang X; Fujioka N; Pescitelli G; Koehn FE; Williamson RT; Nakanishi K; Berova N
    J Am Chem Soc; 2002 Sep; 124(35):10320-35. PubMed ID: 12197735
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Porphyrins and metalloporphyrins: versatile circular dichroic reporter groups for structural studies.
    Huang X; Nakanishi K; Berova N
    Chirality; 2000 May; 12(4):237-55. PubMed ID: 10790194
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface.
    Mali KS; Adisoejoso J; Ghijsens E; De Cat I; De Feyter S
    Acc Chem Res; 2012 Aug; 45(8):1309-20. PubMed ID: 22612471
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Supramolecular chirality induction in bis(zinc porphyrin) by amino acid derivatives: rationalization and applications of the ligand bulkiness effect.
    Borovkov VV; Yamamoto N; Lintuluoto JM; Tanaka T; Inoue Y
    Chirality; 2001 Jun; 13(6):329-35. PubMed ID: 11370023
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determination of enantiomeric excess in amine derivatives with molecular self-assemblies.
    Shcherbakova EG; Minami T; Brega V; James TD; Anzenbacher P
    Angew Chem Int Ed Engl; 2015 Jun; 54(24):7130-3. PubMed ID: 25925816
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A direct stereoselective preparation of a fish pheromone and application of the zinc porphyrin tweezer chiroptical protocol in its stereochemical assignment.
    Ouedraogo YP; Huang L; Torrente MP; Proni G; Chadwick E; Wehmschulte RJ; Nesnas N
    Chirality; 2013 Sep; 25(9):575-81. PubMed ID: 23801425
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Porphyrins Through the Looking Glass: Spectroscopic and Mechanistic Insights in Supramolecular Chirogenesis of New Self-Assembled Porphyrin Derivatives.
    Stefanelli M; Savioli M; Zurlo F; Magna G; Belviso S; Marsico G; Superchi S; Venanzi M; Di Natale C; Paolesse R; Monti D
    Front Chem; 2020; 8():587842. PubMed ID: 33195087
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metalloporphyrin-NO bonding: building bridges with organometallic chemistry.
    Ghosh A
    Acc Chem Res; 2005 Dec; 38(12):943-54. PubMed ID: 16359166
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly stable chiral (A)6-B supramolecular copolymers: a multivalency-based self-assembly process.
    Chen SG; Yu Y; Zhao X; Ma Y; Jiang XK; Li ZT
    J Am Chem Soc; 2011 Jul; 133(29):11124-7. PubMed ID: 21721526
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regioselective and Stereodivergent Synthesis of Enantiomerically Pure
    Wosińska-Hrydczuk M; Boratyński PJ; Skarżewski J
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32046110
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A functional zeolite analogue assembled from metalloporphyrins.
    Kosal ME; Chou JH; Wilson SR; Suslick KS
    Nat Mater; 2002 Oct; 1(2):118-21. PubMed ID: 12618827
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Supramolecular chirality of self-assembled systems in solution.
    Mateos-Timoneda MA; Crego-Calama M; Reinhoudt DN
    Chem Soc Rev; 2004 Jul; 33(6):363-72. PubMed ID: 15280969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.