BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32672747)

  • 1. Tunable plasmon-induced transparency in graphene metamaterials with ring-semiring pair coupling structures.
    Xiao B; Zhu J; Xiao L
    Appl Opt; 2020 Jul; 59(20):6041-6045. PubMed ID: 32672747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Spectral Plasmon-Induced Transparent Terahertz Metamaterial with Independently Tunable Amplitude and Frequency.
    Wu T; Wang G; Jia Y; Shao Y; Chen C; Han J; Gao Y; Gao Y
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface.
    Wang X; Meng H; Deng S; Lao C; Wei Z; Wang F; Tan C; Huang X
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30845741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable dual plasmon-induced transparency based on a monolayer graphene metamaterial and its terahertz sensing performance.
    Ge J; You C; Feng H; Li X; Wang M; Dong L; Veronis G; Yun M
    Opt Express; 2020 Oct; 28(21):31781-31795. PubMed ID: 33115144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable multispectral plasmon induced transparency based on graphene metamaterials.
    Sun C; Si J; Dong Z; Deng X
    Opt Express; 2016 May; 24(11):11466-74. PubMed ID: 27410074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Electromagnetically Induced Transparency Effect in Graphene-Dielectric Hybrid Metamaterial and Its High-Performance Sensor Application.
    Gao F; Yuan P; Gao S; Deng J; Sun Z; Jin G; Zeng G; Yan B
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional and tunable trigate graphene metamaterial with "Lakes of Wada" topology.
    Liu Y; Xu X; Yang D; Zhang X; Ren M; Gong N; Cai W; Hassan F; Zhu Z; Drevenšek-Olenik I; Rupp RA; Xu J
    Opt Express; 2020 Aug; 28(17):24772-24788. PubMed ID: 32907010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Metamaterial with Gold and Graphene Split-Ring Resonators and Plasmonically Induced Transparency.
    Ma Q; Zhan Y; Hong W
    Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30577616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-based tunable terahertz plasmon-induced transparency metamaterial.
    Zhao X; Yuan C; Zhu L; Yao J
    Nanoscale; 2016 Aug; 8(33):15273-80. PubMed ID: 27500393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-graphene hybridized plasmon induced transparency in the terahertz frequencies.
    Yu A; Guo X; Zhu Y; Balakin AV; Shkurinov AP
    Opt Express; 2019 Nov; 27(24):34731-34741. PubMed ID: 31878657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamically controllable multi-switch and slow light based on a pyramid-shaped monolayer graphene metamaterial.
    Xiong C; Chao L; Zeng B; Wu K; Li M; Ruan B; Zhang B; Gao E; Li H
    Phys Chem Chem Phys; 2021 Feb; 23(6):3949-3962. PubMed ID: 33544099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings.
    Wan M; Song Y; Zhang L; Zhou F
    Opt Express; 2015 Oct; 23(21):27361-8. PubMed ID: 26480398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamically controllable plasmon induced transparency based on hybrid metal-graphene metamaterials.
    Yan X; Wang T; Xiao S; Liu T; Hou H; Cheng L; Jiang X
    Sci Rep; 2017 Oct; 7(1):13917. PubMed ID: 29066769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple plasmon-induced transparency based on black phosphorus and graphene for high-sensitivity refractive index sensing.
    Chen S; Zeng L; Li J; Weng J; Li J; Xu P; Liu W; Sun Y; Yang J; Qin Y; Wen K
    Opt Express; 2022 Nov; 30(24):44004-44017. PubMed ID: 36523085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial.
    Chen H; Zhang H; Guo X; Liu S; Zhang Y
    Appl Opt; 2018 Feb; 57(4):752-756. PubMed ID: 29400753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization-sensitive multi-frequency switches and high-performance slow light based on quadruple plasmon-induced transparency in a patterned graphene-based terahertz metamaterial.
    Li Y; Xu Y; Jiang J; Cheng S; Yi Z; Xiao G; Zhou X; Wang Z; Chen Z
    Phys Chem Chem Phys; 2023 Feb; 25(5):3820-3833. PubMed ID: 36645136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive specific terahertz sensor based on tunable plasmon induced transparency of a graphene micro-ribbon array structure.
    Tang PR; Li J; Du LH; Liu Q; Peng QX; Zhao JH; Zhu B; Li ZR; Zhu LG
    Opt Express; 2018 Nov; 26(23):30655-30666. PubMed ID: 30469959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable plasmon-induced transparency with a dielectric grating-coupled graphene structure for slowing terahertz waves.
    Wang T; Yan F; Wang R; Tian F; Li L
    Appl Opt; 2020 Aug; 59(24):7179-7185. PubMed ID: 32902480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial.
    Zhang B; Li H; Xu H; Zhao M; Xiong C; Liu C; Wu K
    Opt Express; 2019 Feb; 27(3):3598-3608. PubMed ID: 30732376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-channel optical switch, refractive index sensor and slow light device based on a graphene metasurface.
    Jiang X; Chen D; Zhang Z; Huang J; Wen K; He J; Yang J
    Opt Express; 2020 Nov; 28(23):34079-34092. PubMed ID: 33182885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.