These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 32672759)
1. Facile synthesis of metal-phenolic-coated gold nanocuboids for surface-enhanced Raman scattering. Zhou M; Zhao C; Li Y; Guo Y; Liu H; Zhang Y; Liu Z Appl Opt; 2020 Jul; 59(20):6124-6130. PubMed ID: 32672759 [TBL] [Abstract][Full Text] [Related]
3. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141 [TBL] [Abstract][Full Text] [Related]
4. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M; Wang Y; Sun X; Wang W; Chen L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901 [TBL] [Abstract][Full Text] [Related]
5. High Surface-Enhanced Raman Scattering (SERS) Amplification Factor Obtained with Silver Printed Circuit Boards and the Influence of Phenolic Resins for the Characterization of the Pesticide Thiram. Silva de Almeida F; Bussler L; Marcio Lima S; Fiorucci AR; da Cunha Andrade LH Appl Spectrosc; 2016 Jul; 70(7):1157-64. PubMed ID: 27279502 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of Au@Ag core-shell nanostructures with a poly(3,4-dihydroxy-L-phenylalanine) interlayer for surface-enhanced Raman scattering imaging of epithelial cells. Wen H; Jiang P; Hu Y; Li G Mikrochim Acta; 2018 Jul; 185(7):353. PubMed ID: 29971629 [TBL] [Abstract][Full Text] [Related]
7. Intracellular and Cellular Detection by SERS-Active Plasmonic Nanostructures. Wu D; Chen Y; Hou S; Fang W; Duan H Chembiochem; 2019 Oct; 20(19):2432-2441. PubMed ID: 30957950 [TBL] [Abstract][Full Text] [Related]
8. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering. Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588 [TBL] [Abstract][Full Text] [Related]
9. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering. Lee H; Lee JH; Jin SM; Suh YD; Nam JM Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433 [TBL] [Abstract][Full Text] [Related]
10. SERS-encoded nanogapped plasmonic nanoparticles: growth of metallic nanoshell by templating redox-active polymer brushes. Song J; Duan B; Wang C; Zhou J; Pu L; Fang Z; Wang P; Lim TT; Duan H J Am Chem Soc; 2014 May; 136(19):6838-41. PubMed ID: 24773367 [TBL] [Abstract][Full Text] [Related]
11. Total Aqueous Synthesis of Au@Cu Lv Q; Min H; Duan DB; Fang W; Pan GM; Shen AG; Wang QQ; Nie G; Hu JM Adv Healthc Mater; 2019 Jan; 8(2):e1801257. PubMed ID: 30548216 [TBL] [Abstract][Full Text] [Related]
12. Analysis of intracellular state based on controlled 3D nanostructures mediated surface enhanced Raman scattering. El-Said WA; Kim TH; Kim H; Choi JW PLoS One; 2011 Feb; 6(2):e15836. PubMed ID: 21390213 [TBL] [Abstract][Full Text] [Related]
13. Characterization of hotspots in a highly enhancing SERS substrate. Asiala SM; Schultz ZD Analyst; 2011 Nov; 136(21):4472-9. PubMed ID: 21946698 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
15. Asymmetric Core-Shell Gold Nanoparticles and Controllable Assemblies for SERS Ratiometric Detection of MicroRNA. Zhu R; Feng H; Li Q; Su L; Fu Q; Li J; Song J; Yang H Angew Chem Int Ed Engl; 2021 May; 60(22):12560-12568. PubMed ID: 33769682 [TBL] [Abstract][Full Text] [Related]
16. Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement. Guo P; Sikdar D; Huang X; Si KJ; Xiong W; Gong S; Yap LW; Premaratne M; Cheng W Nanoscale; 2015 Feb; 7(7):2862-8. PubMed ID: 25599516 [TBL] [Abstract][Full Text] [Related]
17. Laser-induced photochemical synthesis of branched Ag@Au bimetallic nanodendrites as a prominent substrate for surface-enhanced Raman scattering spectroscopy. Xu L; Li S; Zhang H; Wang D; Chen M Opt Express; 2017 Apr; 25(7):7408-7417. PubMed ID: 28380863 [TBL] [Abstract][Full Text] [Related]
18. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Lim DK; Jeon KS; Hwang JH; Kim H; Kwon S; Suh YD; Nam JM Nat Nanotechnol; 2011 May; 6(7):452-60. PubMed ID: 21623360 [TBL] [Abstract][Full Text] [Related]
19. How can we apply the use of surface-enhanced Raman scattering nanoparticles in tumor imaging? Kircher MF Nanomedicine (Lond); 2017 Feb; 12(3):171-174. PubMed ID: 28078943 [No Abstract] [Full Text] [Related]
20. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO Yang Y; Zhu J; Zhao J; Weng GJ; Li JJ; Zhao JW ACS Appl Mater Interfaces; 2019 Jan; 11(3):3617-3626. PubMed ID: 30608142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]