These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32672936)

  • 1. Electrically Conductive Thin Films Based on Nanofibrillated Cellulose: Interactions with Water and Applications in Humidity Sensing.
    Solin K; Borghei M; Sel O; Orelma H; Johansson LS; Perrot H; Rojas OJ
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36437-36448. PubMed ID: 32672936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface charge manipulation for improved humidity sensing of TEMPO-oxidized cellulose nanofibrils.
    Zhu J; Zhu P; Zhu Y; Ye Y; Sun X; Zhang Y; Rojas OJ; Servati P; Jiang F
    Carbohydr Polym; 2024 Jul; 335():122059. PubMed ID: 38616073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nacre-inspired cellulose nanofiber/MXene flexible composite film with mechanical robustness for humidity sensing.
    Han M; Shen W
    Carbohydr Polym; 2022 Dec; 298():120109. PubMed ID: 36241326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitosan wrapped multiwalled carbon nanotubes as quartz crystal microbalance sensing material for humidity detection.
    Qi P; Xu Z; Zhang T; Fei T; Wang R
    J Colloid Interface Sci; 2020 Feb; 560():284-292. PubMed ID: 31670101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible and Highly Sensitive Humidity Sensor Based on Cellulose Nanofibers and Carbon Nanotube Composite Film.
    Zhu P; Liu Y; Fang Z; Kuang Y; Zhang Y; Peng C; Chen G
    Langmuir; 2019 Apr; 35(14):4834-4842. PubMed ID: 30892906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thin films composed of multiwalled carbon nanotubes, gold nanoparticles and myoglobin for humidity detection at room temperature.
    Qi ZM; Wei M; Honma I; Zhou H
    Chemphyschem; 2007 Feb; 8(2):264-9. PubMed ID: 17221901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between cellulose thin film supramolecular structures and interactions with water.
    Tammelin T; Abburi R; Gestranius M; Laine C; Setälä H; Österberg M
    Soft Matter; 2015 Jun; 11(21):4273-82. PubMed ID: 25903294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Water Vapor Adsorption on Electrical Properties of Carbon Nanotube/Nanocrystalline Cellulose Composites.
    Safari S; van de Ven TG
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9483-9. PubMed ID: 26998641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of sorption isotherm and rheological properties of lysozyme using a high-resolution humidity scanning QCM-D technique.
    Graf G; Kocherbitov V
    J Phys Chem B; 2013 Aug; 117(34):10017-26. PubMed ID: 23947953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties.
    Aulin C; Karabulut E; Tran A; Wågberg L; Lindström T
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7352-9. PubMed ID: 23834391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on a quartz crystal microbalance sensor based on chitosan-functionalized mesoporous silica for humidity detection.
    Qi P; Xu Z; Zhou T; Zhang T; Zhao H
    J Colloid Interface Sci; 2021 Feb; 583():340-350. PubMed ID: 33007590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water vapor sorption properties of TEMPO oxidized and sulfuric acid treated cellulose nanocrystal films.
    Guo X; Liu L; Hu Y; Wu Y
    Carbohydr Polym; 2018 Oct; 197():524-530. PubMed ID: 30007643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quartz Crystal Microbalance Humidity Sensors Based on Structured Graphene Oxide Membranes with Magnesium Ions: Design, Mechanism and Performance.
    Yi R; Peng B; Zhao Y; Nie D; Chen L; Zhang L
    Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability.
    Zhu P; Kuang Y; Wei Y; Li F; Ou H; Jiang F; Chen G
    Chem Eng J; 2021 Jan; 404():127105. PubMed ID: 32994751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water Vapor Uptake of Ultrathin Films of Biologically Derived Nanocrystals: Quantitative Assessment with Quartz Crystal Microbalance and Spectroscopic Ellipsometry.
    Niinivaara E; Faustini M; Tammelin T; Kontturi E
    Langmuir; 2015 Nov; 31(44):12170-6. PubMed ID: 26461931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Humidity Response of Cellulose Thin Films.
    Reishofer D; Resel R; Sattelkow J; Fischer WJ; Niegelhell K; Mohan T; Kleinschek KS; Amenitsch H; Plank H; Tammelin T; Kontturi E; Spirk S
    Biomacromolecules; 2022 Mar; 23(3):1148-1157. PubMed ID: 35225593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rice Husk-Derived Cellulose Nanofibers: A Potential Sensor for Water-Soluble Gases.
    Shahi N; Lee E; Min B; Kim DJ
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34203163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial Mechanisms of Water Vapor Sorption into Cellulose Nanofibril Films as Revealed by Quantitative Models.
    Hakalahti M; Faustini M; Boissière C; Kontturi E; Tammelin T
    Biomacromolecules; 2017 Sep; 18(9):2951-2958. PubMed ID: 28816438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water Sorption in Electron-Beam Evaporated SiO
    Kushner DI; Hickner MA
    Langmuir; 2017 May; 33(21):5261-5268. PubMed ID: 28474891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Study of Gravimetric Humidity Sensor Platforms Based on CMUT and QCM.
    Zheng Z; Zhang G; Wang X; Kong X
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36296004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.