BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32672955)

  • 1. Correction to "Self-Fibrillating Cellulose Fibers: Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers".
    Gorur YC; Larsson PA; Wågberg L
    Biomacromolecules; 2020 Aug; 21(8):3479. PubMed ID: 32672955
    [No Abstract]   [Full Text] [Related]  

  • 2. Self-Fibrillating Cellulose Fibers: Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers.
    Gorur YC; Larsson PA; Wågberg L
    Biomacromolecules; 2020 Apr; 21(4):1480-1488. PubMed ID: 32167304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hazy Transparent Cellulose Nanopaper.
    Hsieh MC; Koga H; Suganuma K; Nogi M
    Sci Rep; 2017 Jan; 7():41590. PubMed ID: 28128326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Characterization of Self-Fibrillating Cellulose Fibers and Their Use in Tunable Filters.
    Gorur YC; Reid MS; Montanari C; Larsson PT; Larsson PA; Wågberg L
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32467-32478. PubMed ID: 34106700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast method to prepare mechanically strong and water resistant lignocellulosic nanopapers.
    Sethi J; Visanko M; Österberg M; Sirviö JA
    Carbohydr Polym; 2019 Jan; 203():148-156. PubMed ID: 30318198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the flame retardancy mechanism of highly transparent cellulose nanopapers fabricated by vacuum filtration assisted layer-by-layer deposition.
    Lee S; Seong D; Ju Y; Kwak HW; Kim WS; Lee D
    Carbohydr Polym; 2020 Oct; 246():116628. PubMed ID: 32747264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Transparent, Flexible, and Mechanically Strong Nanopapers of Cellulose Nanofibers @Metal-Organic Frameworks.
    Zhou S; Strømme M; Xu C
    Chemistry; 2019 Mar; 25(14):3515-3520. PubMed ID: 30688380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of nanofibrillation of softwood cellulosic fibers by oxidation and sulfonation.
    Pan S; Ragauskas AJ
    Carbohydr Polym; 2014 Oct; 111():514-23. PubMed ID: 25037382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of cellulose and lignocellulose nanopapers prepared from hard wood pulps: Morphological, structural and barrier properties.
    Djafari Petroudy SR; Rahmani N; Rasooly Garmaroody E; Rudi H; Ramezani O
    Int J Biol Macromol; 2019 Aug; 135():512-520. PubMed ID: 31152834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselectively water resistant hybrid nanopapers prepared by cellulose nanofibers and water-based polyurethane.
    Sethi J; Farooq M; Österberg M; Illikainen M; Sirviö JA
    Carbohydr Polym; 2018 Nov; 199():286-293. PubMed ID: 30143131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose Nanofiber-Based Polyaniline Flexible Papers as Sustainable Microwave Absorbers in the X-Band.
    Gopakumar DA; Pai AR; Pottathara YB; Pasquini D; Carlos de Morais L; Luke M; Kalarikkal N; Grohens Y; Thomas S
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20032-20043. PubMed ID: 29812890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole.
    Lay M; Méndez JA; Delgado-Aguilar M; Bun KN; Vilaseca F
    Carbohydr Polym; 2016 Nov; 152():361-369. PubMed ID: 27516283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres.
    Mtibe A; Linganiso LZ; Mathew AP; Oksman K; John MJ; Anandjiwala RD
    Carbohydr Polym; 2015 Mar; 118():1-8. PubMed ID: 25542099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transparent, water-stable, cellulose nanofiber-based packaging film with a low oxygen permeability.
    Kim JK; Choi B; Jin J
    Carbohydr Polym; 2020 Dec; 249():116823. PubMed ID: 32933670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors.
    Dai S; Chu Y; Liu D; Cao F; Wu X; Zhou J; Zhou B; Chen Y; Huang J
    Nat Commun; 2018 Jul; 9(1):2737. PubMed ID: 30013115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps.
    Afra E; Yousefi H; Hadilam MM; Nishino T
    Carbohydr Polym; 2013 Sep; 97(2):725-30. PubMed ID: 23911507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose Nanofibers from a Dutch Elm Disease-Resistant
    Jiménez-López L; Eugenio ME; Ibarra D; Darder M; Martín JA; Martín-Sampedro R
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33113940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Water Softening with TEMPO-Oxidized/Phosphorylated Nanopapers.
    Mautner A; Kobkeatthawin T; Mayer F; Plessl C; Gorgieva S; Kokol V; Bismarck A
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30678201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable Chitin Nanofibrils Provide Outstanding Flame-Retardant Nanopapers.
    Riehle F; Hoenders D; Guo J; Eckert A; Ifuku S; Walther A
    Biomacromolecules; 2019 Feb; 20(2):1098-1108. PubMed ID: 30615421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of pH on Nanofibrillation of TEMPO-Oxidized Paper Mulberry Bast Fibers.
    Park JY; Park CW; Han SY; Kwon GJ; Kim NH; Lee SH
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.