These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 32672965)
21. Design, Synthesis, Biological Evaluation, and X-ray Studies of HIV-1 Protease Inhibitors with Modified P2' Ligands of Darunavir. Ghosh AK; Fyvie WS; Brindisi M; Steffey M; Agniswamy J; Wang YF; Aoki M; Amano M; Weber IT; Mitsuya H ChemMedChem; 2017 Dec; 12(23):1942-1952. PubMed ID: 29110408 [TBL] [Abstract][Full Text] [Related]
22. Design of substituted tetrahydrofuran derivatives for HIV-1 protease inhibitors: synthesis, biological evaluation, and X-ray structural studies. Ghosh AK; Lee D; Sharma A; Johnson ME; Ghosh AK; Wang YF; Agniswamy J; Amano M; Hattori SI; Weber IT; Mitsuya H Org Biomol Chem; 2024 Sep; 22(36):7354-7372. PubMed ID: 38973505 [TBL] [Abstract][Full Text] [Related]
23. HIV-1 Protease Inhibitors Incorporating Stereochemically Defined P2' Ligands To Optimize Hydrogen Bonding in the Substrate Envelope. Rusere LN; Lockbaum GJ; Lee SK; Henes M; Kosovrasti K; Spielvogel E; Nalivaika EA; Swanstrom R; Yilmaz NK; Schiffer CA; Ali A J Med Chem; 2019 Sep; 62(17):8062-8079. PubMed ID: 31386368 [TBL] [Abstract][Full Text] [Related]
24. Structure-Based Design of Highly Potent HIV-1 Protease Inhibitors Containing New Tricyclic Ring P2-Ligands: Design, Synthesis, Biological, and X-ray Structural Studies. Ghosh AK; Kovela S; Osswald HL; Amano M; Aoki M; Agniswamy J; Wang YF; Weber IT; Mitsuya H J Med Chem; 2020 May; 63(9):4867-4879. PubMed ID: 32348139 [TBL] [Abstract][Full Text] [Related]
25. Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro. Tojo Y; Koh Y; Amano M; Aoki M; Das D; Kulkarni S; Anderson DD; Ghosh AK; Mitsuya H Antimicrob Agents Chemother; 2010 Aug; 54(8):3460-70. PubMed ID: 20439612 [TBL] [Abstract][Full Text] [Related]
26. Interdependence of Inhibitor Recognition in HIV-1 Protease. Paulsen JL; Leidner F; Ragland DA; Kurt Yilmaz N; Schiffer CA J Chem Theory Comput; 2017 May; 13(5):2300-2309. PubMed ID: 28358514 [TBL] [Abstract][Full Text] [Related]
27. Potent HIV-1 Protease Inhibitors Containing Carboxylic and Boronic Acids: Effect on Enzyme Inhibition and Antiviral Activity and Protein-Ligand X-ray Structural Studies. Ghosh AK; Xia Z; Kovela S; Robinson WL; Johnson ME; Kneller DW; Wang YF; Aoki M; Takamatsu Y; Weber IT; Mitsuya H ChemMedChem; 2019 Nov; 14(21):1863-1872. PubMed ID: 31549492 [TBL] [Abstract][Full Text] [Related]
28. Design and Synthesis of Highly Potent HIV-1 Protease Inhibitors Containing Tricyclic Fused Ring Systems as Novel P2 Ligands: Structure-Activity Studies, Biological and X-ray Structural Analysis. Ghosh AK; R Nyalapatla P; Kovela S; Rao KV; Brindisi M; Osswald HL; Amano M; Aoki M; Agniswamy J; Wang YF; Weber IT; Mitsuya H J Med Chem; 2018 May; 61(10):4561-4577. PubMed ID: 29763303 [TBL] [Abstract][Full Text] [Related]
29. Design and biological evaluation of novel HIV-1 protease inhibitors with isopropanol as P1' ligand to enhance binding with S1' subsite. Zhu M; Ma L; Dong B; Zhang G; Wang J; Zhou J; Cen S; Wang Y Bioorg Med Chem; 2020 Aug; 28(16):115623. PubMed ID: 32690263 [TBL] [Abstract][Full Text] [Related]
30. Design and synthesis of potent HIV-1 protease inhibitors with (S)-tetrahydrofuran-tertiary amine-acetamide as P2-ligand: Structure-activity studies and biological evaluation. Bai X; Yang Z; Zhu M; Dong B; Zhou L; Zhang G; Wang J; Wang Y Eur J Med Chem; 2017 Sep; 137():30-44. PubMed ID: 28554091 [TBL] [Abstract][Full Text] [Related]
31. Piperidine scaffold as the novel P2-ligands in cyclopropyl-containing HIV-1 protease inhibitors: Structure-based design, synthesis, biological evaluation and docking study. Zhou H; Zhu M; Ma L; Zhou J; Dong B; Zhang G; Cen S; Wang Y; Wang J PLoS One; 2020; 15(7):e0235483. PubMed ID: 32697773 [TBL] [Abstract][Full Text] [Related]
32. Novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI) UIC-94017 (TMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro. Koh Y; Nakata H; Maeda K; Ogata H; Bilcer G; Devasamudram T; Kincaid JF; Boross P; Wang YF; Tie Y; Volarath P; Gaddis L; Harrison RW; Weber IT; Ghosh AK; Mitsuya H Antimicrob Agents Chemother; 2003 Oct; 47(10):3123-9. PubMed ID: 14506019 [TBL] [Abstract][Full Text] [Related]
33. Design, synthesis, and biological and structural evaluations of novel HIV-1 protease inhibitors to combat drug resistance. Parai MK; Huggins DJ; Cao H; Nalam MN; Ali A; Schiffer CA; Tidor B; Rana TM J Med Chem; 2012 Jul; 55(14):6328-41. PubMed ID: 22708897 [TBL] [Abstract][Full Text] [Related]
34. Substituent effects on P2-cyclopentyltetrahydrofuranyl urethanes: design, synthesis, and X-ray studies of potent HIV-1 protease inhibitors. Ghosh AK; Chapsal BD; Steffey M; Agniswamy J; Wang YF; Amano M; Weber IT; Mitsuya H Bioorg Med Chem Lett; 2012 Mar; 22(6):2308-11. PubMed ID: 22364812 [TBL] [Abstract][Full Text] [Related]
35. Identification of Highly Potent Human Immunodeficiency Virus Type-1 Protease Inhibitors against Lopinavir and Darunavir Resistant Viruses from Allophenylnorstatine-Based Peptidomimetics with P2 Tetrahydrofuranylglycine. Hidaka K; Kimura T; Sankaranarayanan R; Wang J; McDaniel KF; Kempf DJ; Kameoka M; Adachi M; Kuroki R; Nguyen JT; Hayashi Y; Kiso Y J Med Chem; 2018 Jun; 61(12):5138-5153. PubMed ID: 29852069 [TBL] [Abstract][Full Text] [Related]
36. GRL-04810 and GRL-05010, difluoride-containing nonpeptidic HIV-1 protease inhibitors (PIs) that inhibit the replication of multi-PI-resistant HIV-1 in vitro and possess favorable lipophilicity that may allow blood-brain barrier penetration. Salcedo Gómez PM; Amano M; Yashchuk S; Mizuno A; Das D; Ghosh AK; Mitsuya H Antimicrob Agents Chemother; 2013 Dec; 57(12):6110-21. PubMed ID: 24080647 [TBL] [Abstract][Full Text] [Related]
37. Structure-based design of HIV-1 protease inhibitors: replacement of two amides and a 10 pi-aromatic system by a fused bis-tetrahydrofuran. Ghosh AK; Thompson WJ; Fitzgerald PM; Culberson JC; Axel MG; McKee SP; Huff JR; Anderson PS J Med Chem; 1994 Aug; 37(16):2506-8. PubMed ID: 8057296 [No Abstract] [Full Text] [Related]
38. A Modified P1 Moiety Enhances In Vitro Antiviral Activity against Various Multidrug-Resistant HIV-1 Variants and In Vitro Central Nervous System Penetration Properties of a Novel Nonpeptidic Protease Inhibitor, GRL-10413. Amano M; Salcedo-Gómez PM; Zhao R; Yedidi RS; Das D; Bulut H; Delino NS; Sheri VR; Ghosh AK; Mitsuya H Antimicrob Agents Chemother; 2016 Dec; 60(12):7046-7059. PubMed ID: 27620483 [TBL] [Abstract][Full Text] [Related]
39. Prediction of potency of protease inhibitors using free energy simulations with polarizable quantum mechanics-based ligand charges and a hybrid water model. Das D; Koh Y; Tojo Y; Ghosh AK; Mitsuya H J Chem Inf Model; 2009 Dec; 49(12):2851-62. PubMed ID: 19928916 [TBL] [Abstract][Full Text] [Related]
40. Structure based design: novel spirocyclic ethers as nonpeptidal P2-ligands for HIV protease inhibitors. Ghosh AK; Krishnan K; Walters DE; Cho W; Cho H; Koo Y; Trevino J; Holland L; Buthod J Bioorg Med Chem Lett; 1998 Apr; 8(8):979-82. PubMed ID: 9871524 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]