These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A novel approach to describe chemical environments in high-dimensional neural network potentials. Kocer E; Mason JK; Erturk H J Chem Phys; 2019 Apr; 150(15):154102. PubMed ID: 31005106 [TBL] [Abstract][Full Text] [Related]
5. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials. Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368 [TBL] [Abstract][Full Text] [Related]
6. REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems. Zhang Y; Xia J; Jiang B J Chem Phys; 2022 Mar; 156(11):114801. PubMed ID: 35317591 [TBL] [Abstract][Full Text] [Related]
7. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration. Kang PL; Shang C; Liu ZP Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999 [TBL] [Abstract][Full Text] [Related]
8. Improve the performance of machine-learning potentials by optimizing descriptors. Gao H; Wang J; Sun J J Chem Phys; 2019 Jun; 150(24):244110. PubMed ID: 31255049 [TBL] [Abstract][Full Text] [Related]
9. Accelerating atomistic simulations with piecewise machine-learned Zhang Y; Hu C; Jiang B Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743 [TBL] [Abstract][Full Text] [Related]
10. Descriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials. Jinnouchi R; Karsai F; Verdi C; Asahi R; Kresse G J Chem Phys; 2020 Jun; 152(23):234102. PubMed ID: 32571051 [TBL] [Abstract][Full Text] [Related]
11. Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network. Lu J; Wang C; Zhang Y J Chem Theory Comput; 2019 Jul; 15(7):4113-4121. PubMed ID: 31142110 [TBL] [Abstract][Full Text] [Related]
12. Atomic Energies from a Convolutional Neural Network. Chen X; Jørgensen MS; Li J; Hammer B J Chem Theory Comput; 2018 Jul; 14(7):3933-3942. PubMed ID: 29812930 [TBL] [Abstract][Full Text] [Related]
13. A Gaussian Process Based Δ-Machine Learning Approach to Reactive Potential Energy Surfaces. Liu Y; Guo H J Phys Chem A; 2023 Oct; 127(41):8765-8772. PubMed ID: 37815868 [TBL] [Abstract][Full Text] [Related]
14. Bond Type Restricted Property Weighted Radial Distribution Functions for Accurate Machine Learning Prediction of Atomization Energies. Krykunov M; Woo TK J Chem Theory Comput; 2018 Oct; 14(10):5229-5237. PubMed ID: 30148628 [TBL] [Abstract][Full Text] [Related]
15. Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments. Zaverkin V; Holzmüller D; Steinwart I; Kästner J J Chem Theory Comput; 2021 Oct; 17(10):6658-6670. PubMed ID: 34585927 [TBL] [Abstract][Full Text] [Related]
16. Efficient sampling of high-energy states by machine learning force fields. Plazinski W; Plazinska A; Brzyska A Phys Chem Chem Phys; 2020 Jul; 22(25):14364-14374. PubMed ID: 32568319 [TBL] [Abstract][Full Text] [Related]
17. Efficient Training of Machine Learning Potentials by a Randomized Atomic-System Generator. Choi YJ; Jhi SH J Phys Chem B; 2020 Oct; 124(39):8704-8710. PubMed ID: 32910653 [TBL] [Abstract][Full Text] [Related]
18. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Batzner S; Musaelian A; Sun L; Geiger M; Mailoa JP; Kornbluth M; Molinari N; Smidt TE; Kozinsky B Nat Commun; 2022 May; 13(1):2453. PubMed ID: 35508450 [TBL] [Abstract][Full Text] [Related]
19. Combining Machine Learning Approaches and Accurate Devergne T; Magrino T; Pietrucci F; Saitta AM J Chem Theory Comput; 2022 Sep; 18(9):5410-5421. PubMed ID: 35930696 [TBL] [Abstract][Full Text] [Related]
20. AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials. Glick ZL; Metcalf DP; Koutsoukas A; Spronk SA; Cheney DL; Sherrill CD J Chem Phys; 2020 Jul; 153(4):044112. PubMed ID: 32752707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]