These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32672973)

  • 1. Decoding a Percolation Phase Transition of Water at ∼330 K with a Nanoparticle Ruler.
    Brites CDS; Zhuang B; Debasu ML; Ding D; Qin X; Maturi FE; Lim WWY; Soh W; Rocha J; Yi Z; Liu X; Carlos LD
    J Phys Chem Lett; 2020 Aug; 11(16):6704-6711. PubMed ID: 32672973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry.
    Brites CD; Xie X; Debasu ML; Qin X; Chen R; Huang W; Rocha J; Liu X; Carlos LD
    Nat Nanotechnol; 2016 Oct; 11(10):851-856. PubMed ID: 27376242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic evolution during the phase transition on a metastable single NaYF
    Pin MW; Park EJ; Choi S; Kim YI; Jeon CH; Ha TH; Kim YH
    Sci Rep; 2018 Feb; 8(1):2199. PubMed ID: 29396518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unravelling the contribution of local structures to the anomalies of water: The synergistic action of several factors.
    Martelli F
    J Chem Phys; 2019 Mar; 150(9):094506. PubMed ID: 30849899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transitions in pressure collapsed clathrate hydrates.
    Andersson O; Nakazawa Y
    J Phys Chem B; 2015 Mar; 119(9):3846-53. PubMed ID: 25686530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase.
    Yu W; Xu W; Song H; Zhang S
    Dalton Trans; 2014 Apr; 43(16):6139-47. PubMed ID: 24577323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water Is a Cagey Liquid.
    Urbic T; Dill KA
    J Am Chem Soc; 2018 Dec; 140(49):17106-17113. PubMed ID: 30461279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural rearrangements in water viewed through two-dimensional infrared spectroscopy.
    Roberts ST; Ramasesha K; Tokmakoff A
    Acc Chem Res; 2009 Sep; 42(9):1239-49. PubMed ID: 19585982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing into water's "no man's land": two liquid states?
    Paschek D; Ludwig R
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11699-701. PubMed ID: 25252122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the Emerging Networks of Voids in Simulated Supercooled Water.
    Ansari N; Onat B; Sosso GC; Hassanali A
    J Phys Chem B; 2020 Mar; 124(11):2180-2190. PubMed ID: 32032486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the low-temperature phase behavior of aqueous ionic liquids.
    Bachler J; Daidone I; Zanetti-Polzi L; Loerting T
    Phys Chem Chem Phys; 2024 Mar; 26(12):9741-9753. PubMed ID: 38470827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quenching of the upconversion luminescence of NaYF₄:Yb³⁺,Er³⁺ and NaYF₄:Yb³⁺,Tm³⁺ nanophosphors by water: the role of the sensitizer Yb³⁺ in non-radiative relaxation.
    Arppe R; Hyppänen I; Perälä N; Peltomaa R; Kaiser M; Würth C; Christ S; Resch-Genger U; Schäferling M; Soukka T
    Nanoscale; 2015 Jul; 7(27):11746-57. PubMed ID: 26104183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced upconversion emission in colloidal (NaYF4:Er(3+))/NaYF4 core/shell nanoparticles excited at 1523 nm.
    Shao W; Chen G; Damasco J; Wang X; Kachynski A; Ohulchanskyy TY; Yang C; Ågren H; Prasad PN
    Opt Lett; 2014 Mar; 39(6):1386-9. PubMed ID: 24690794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The anomalies and criticality of liquid water.
    Shi R; Tanaka H
    Proc Natl Acad Sci U S A; 2020 Oct; 117(43):26591-26599. PubMed ID: 33060296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb(3+),Er(3+) upconversion nanoparticles.
    Lu D; Mao C; Cho SK; Ahn S; Park W
    Sci Rep; 2016 Jan; 6():18894. PubMed ID: 26739230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimentally probing the libration of interfacial water: the rotational potential of water is stiffer at the air/water interface than in bulk liquid.
    Tong Y; Kampfrath T; Campen RK
    Phys Chem Chem Phys; 2016 Jul; 18(27):18424-30. PubMed ID: 27339861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic Analysis of the Two-Liquid Model for Anomalies of Water, HDL-LDL Fluctuations, and Liquid-Liquid Transition.
    Johari GP; Teixeira J
    J Phys Chem B; 2015 Nov; 119(44):14210-20. PubMed ID: 26436324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Percolation transition and bimodal density distribution in hydrogen fluoride.
    Feigl E; Jedlovszky P; Sega M
    J Chem Phys; 2024 May; 160(20):. PubMed ID: 38785286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water's two-critical-point scenario in the Ising paradigm.
    Cerdeiriña CA; Troncoso J; González-Salgado D; Debenedetti PG; Stanley HE
    J Chem Phys; 2019 Jun; 150(24):244509. PubMed ID: 31255058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.