BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 32673509)

  • 21. Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2.
    Nersisyan S; Shkurnikov M; Turchinovich A; Knyazev E; Tonevitsky A
    PLoS One; 2020; 15(7):e0235987. PubMed ID: 32726325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age, Inflammation, and Disease Location Are Critical Determinants of Intestinal Expression of SARS-CoV-2 Receptor
    Nowak JK; Lindstrøm JC; Kalla R; Ricanek P; Halfvarson J; Satsangi J
    Gastroenterology; 2020 Sep; 159(3):1151-1154.e2. PubMed ID: 32413354
    [No Abstract]   [Full Text] [Related]  

  • 23. ACE2 mouse models: a toolbox for cardiovascular and pulmonary research.
    Jia H; Yue X; Lazartigues E
    Nat Commun; 2020 Oct; 11(1):5165. PubMed ID: 33057007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart.
    Liu H; Gai S; Wang X; Zeng J; Sun C; Zhao Y; Zheng Z
    Cardiovasc Res; 2020 Aug; 116(10):1733-1741. PubMed ID: 32638018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators.
    Gkogkou E; Barnasas G; Vougas K; Trougakos IP
    Redox Biol; 2020 Sep; 36():101615. PubMed ID: 32863223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. COVID-19 and cardiovascular disease: What we know, what we think we know, and what we need to know.
    Dhawan R; Gundry RL; Brett-Major DM; Mahr C; Thiele GM; Lindsey ML; Anderson DR
    J Mol Cell Cardiol; 2020 Jul; 144():12-14. PubMed ID: 32339565
    [No Abstract]   [Full Text] [Related]  

  • 27. Sex-mediated effects of ACE2 and TMPRSS2 on the incidence and severity of COVID-19; The need for genetic implementation.
    Alshahawey M; Raslan M; Sabri N
    Curr Res Transl Med; 2020 Nov; 68(4):149-150. PubMed ID: 32917573
    [No Abstract]   [Full Text] [Related]  

  • 28. Natural Flavonoids as Potential Angiotensin-Converting Enzyme 2 Inhibitors for Anti-SARS-CoV-2.
    Muchtaridi M; Fauzi M; Khairul Ikram NK; Mohd Gazzali A; Wahab HA
    Molecules; 2020 Sep; 25(17):. PubMed ID: 32882868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery and characterization of ACE2 - a 20-year journey of surprises from vasopeptidase to COVID-19.
    Hooper NM; Lambert DW; Turner AJ
    Clin Sci (Lond); 2020 Sep; 134(18):2489-2501. PubMed ID: 32990314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea.
    Ma D; Chen CB; Jhanji V; Xu C; Yuan XL; Liang JJ; Huang Y; Cen LP; Ng TK
    Eye (Lond); 2020 Jul; 34(7):1212-1219. PubMed ID: 32382146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of SARS-CoV-2 receptor
    Weatherbee BAT; Glover DM; Zernicka-Goetz M
    Open Biol; 2020 Aug; 10(8):200162. PubMed ID: 32750256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endocrine aspects of ACE2 regulation: RAAS, steroid hormones and SARS-CoV-2.
    Young MJ; Clyne CD; Chapman KE
    J Endocrinol; 2020 Nov; 247(2):R45-R62. PubMed ID: 32966970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SARS-CoV-2 (COVID-19) structural and evolutionary dynamicome: Insights into functional evolution and human genomics.
    Gupta R; Charron J; Stenger CL; Painter J; Steward H; Cook TW; Faber W; Frisch A; Lind E; Bauss J; Li X; Sirpilla O; Soehnlen X; Underwood A; Hinds D; Morris M; Lamb N; Carcillo JA; Bupp C; Uhal BD; Rajasekaran S; Prokop JW
    J Biol Chem; 2020 Aug; 295(33):11742-11753. PubMed ID: 32587094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Host Polymorphisms May Impact SARS-CoV-2 Infectivity.
    Brest P; Refae S; Mograbi B; Hofman P; Milano G
    Trends Genet; 2020 Nov; 36(11):813-815. PubMed ID: 32828550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spironolactone may provide protection from SARS-CoV-2: Targeting androgens, angiotensin converting enzyme 2 (ACE2), and renin-angiotensin-aldosterone system (RAAS).
    Cadegiani FA; Goren A; Wambier CG
    Med Hypotheses; 2020 Oct; 143():110112. PubMed ID: 32721806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of SARS-CoV-2 and Other Coronavirus With ACE (Angiotensin-Converting Enzyme)-2 as Their Main Receptor: Therapeutic Implications.
    Davidson AM; Wysocki J; Batlle D
    Hypertension; 2020 Nov; 76(5):1339-1349. PubMed ID: 32851855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ACE2 receptor expression in testes: implications in coronavirus disease 2019 pathogenesis†.
    Verma S; Saksena S; Sadri-Ardekani H
    Biol Reprod; 2020 Aug; 103(3):449-451. PubMed ID: 32427288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19.
    Vaduganathan M; Vardeny O; Michel T; McMurray JJV; Pfeffer MA; Solomon SD
    N Engl J Med; 2020 Apr; 382(17):1653-1659. PubMed ID: 32227760
    [No Abstract]   [Full Text] [Related]  

  • 39. Heterogeneous expression of the SARS-Coronavirus-2 receptor ACE2 in the human respiratory tract.
    Ortiz ME; Thurman A; Pezzulo AA; Leidinger MR; Klesney-Tait JA; Karp PH; Tan P; Wohlford-Lenane C; McCray PB; Meyerholz DK
    EBioMedicine; 2020 Oct; 60():102976. PubMed ID: 32971472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ACE2 (Angiotensin-Converting Enzyme 2), COVID-19, and ACE Inhibitor and Ang II (Angiotensin II) Receptor Blocker Use During the Pandemic: The Pediatric Perspective.
    South AM; Brady TM; Flynn JT
    Hypertension; 2020 Jul; 76(1):16-22. PubMed ID: 32367746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.