These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32673748)

  • 1. Fine-grain atlases of functional modes for fMRI analysis.
    Dadi K; Varoquaux G; Machlouzarides-Shalit A; Gorgolewski KJ; Wassermann D; Thirion B; Mensch A
    Neuroimage; 2020 Nov; 221():117126. PubMed ID: 32673748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.
    Zhao Y; Dong Q; Chen H; Iraji A; Li Y; Makkie M; Kou Z; Liu T
    Med Image Anal; 2017 Dec; 42():200-211. PubMed ID: 28843214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using connectomics for predictive assessment of brain parcellations.
    Albers KJ; Ambrosen KS; Liptrot MG; Dyrby TB; Schmidt MN; Mørup M
    Neuroimage; 2021 Sep; 238():118170. PubMed ID: 34087365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing fine-grained spatiotemporal neonatal functional atlases with spectral functional network learning.
    Wen X; Zhao Y; Chen G; Zhang H; Zhang D
    Hum Brain Mapp; 2024 Jun; 45(8):e26718. PubMed ID: 38825985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A precision functional atlas of personalized network topography and probabilities.
    Hermosillo RJM; Moore LA; Feczko E; Miranda-Domínguez Ó; Pines A; Dworetsky A; Conan G; Mooney MA; Randolph A; Graham A; Adeyemo B; Earl E; Perrone A; Carrasco CM; Uriarte-Lopez J; Snider K; Doyle O; Cordova M; Koirala S; Grimsrud GJ; Byington N; Nelson SM; Gratton C; Petersen S; Feldstein Ewing SW; Nagel BJ; Dosenbach NUF; Satterthwaite TD; Fair DA
    Nat Neurosci; 2024 May; 27(5):1000-1013. PubMed ID: 38532024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the spatial variability in the major resting-state networks across human brain functional atlases.
    Doucet GE; Lee WH; Frangou S
    Hum Brain Mapp; 2019 Oct; 40(15):4577-4587. PubMed ID: 31322303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ICN_Atlas: Automated description and quantification of functional MRI activation patterns in the framework of intrinsic connectivity networks.
    Kozák LR; van Graan LA; Chaudhary UJ; Szabó ÁG; Lemieux L
    Neuroimage; 2017 Dec; 163():319-341. PubMed ID: 28899742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrastive voxel clustering for multiscale modeling of brain network.
    Ding Z; Huang Y; Zeng X; Jiang S; Feng S; Wang Z; Wang L; Wang Z; Xu Y; Liu Y;
    Neuroimage; 2024 Aug; 297():120755. PubMed ID: 39074761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncovering multi-site identifiability based on resting-state functional connectomes.
    Bari S; Amico E; Vike N; Talavage TM; Goñi J
    Neuroimage; 2019 Nov; 202():115967. PubMed ID: 31352124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. There is no single functional atlas even for a single individual: Functional parcel definitions change with task.
    Salehi M; Greene AS; Karbasi A; Shen X; Scheinost D; Constable RT
    Neuroimage; 2020 Mar; 208():116366. PubMed ID: 31740342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prefiltering based on experimental paradigm for analysis of fMRI complex brain networks.
    Jiménez S; Rotger L; Aguirre C; Muñoz A; Granados S; Tornero J
    PLoS One; 2020; 15(10):e0238994. PubMed ID: 33052938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A whole brain fMRI atlas generated via spatially constrained spectral clustering.
    Craddock RC; James GA; Holtzheimer PE; Hu XP; Mayberg HS
    Hum Brain Mapp; 2012 Aug; 33(8):1914-28. PubMed ID: 21769991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing Connectome Atlas by Graph Laplacian Learning.
    Kim M; Yan C; Yang D; Liang P; Kaufer DI; Wu G
    Neuroinformatics; 2021 Apr; 19(2):233-249. PubMed ID: 32712763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probabilistic mapping of human functional brain networks identifies regions of high group consensus.
    Dworetsky A; Seitzman BA; Adeyemo B; Neta M; Coalson RS; Petersen SE; Gratton C
    Neuroimage; 2021 Aug; 237():118164. PubMed ID: 34000397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AICHA: An atlas of intrinsic connectivity of homotopic areas.
    Joliot M; Jobard G; Naveau M; Delcroix N; Petit L; Zago L; Crivello F; Mellet E; Mazoyer B; Tzourio-Mazoyer N
    J Neurosci Methods; 2015 Oct; 254():46-59. PubMed ID: 26213217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T-distribution stochastic neighbor embedding for fine brain functional parcellation on rs-fMRI.
    Hu Y; Li X; Wang L; Han B; Nie S
    Brain Res Bull; 2020 Sep; 162():199-207. PubMed ID: 32603775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting functional neuroanatomical maps from fusing brain networks with genetic information.
    Ganglberger F; Kaczanowska J; Penninger JM; Hess A; Bühler K; Haubensak W
    Neuroimage; 2018 Apr; 170():113-120. PubMed ID: 28877513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution connectomic fingerprints: Mapping neural identity and behavior.
    Mansour L S; Tian Y; Yeo BTT; Cropley V; Zalesky A
    Neuroimage; 2021 Apr; 229():117695. PubMed ID: 33422711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation.
    Wink AM; de Munck JC; van der Werf YD; van den Heuvel OA; Barkhof F
    Brain Connect; 2012; 2(5):265-74. PubMed ID: 23016836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.