These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 32673915)

  • 41. Photocatalytic degradation of gaseous benzene using metal oxide nanocomposites.
    Bathla A; Vikrant K; Kukkar D; Kim KH
    Adv Colloid Interface Sci; 2022 Jul; 305():102696. PubMed ID: 35640317
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Solar-driven semi-conductor photocatalytic water treatment (TiO
    Pestana CJ; Hui J; Camacho-Muñoz D; Edwards C; Robertson PKJ; Irvine JTS; Lawton LA
    Chemosphere; 2023 Jan; 310():136828. PubMed ID: 36241123
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A photoelectrochemical aptasensor constructed with core-shell CuS-TiO
    Tang Y; Chai Y; Liu X; Li L; Yang L; Liu P; Zhou Y; Ju H; Cheng Y
    Biosens Bioelectron; 2018 Oct; 117():224-231. PubMed ID: 29906770
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review.
    Gopinath KP; Madhav NV; Krishnan A; Malolan R; Rangarajan G
    J Environ Manage; 2020 Sep; 270():110906. PubMed ID: 32721341
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent Progress on Titanium Dioxide Nanomaterials for Photocatalytic Applications.
    Nasr M; Eid C; Habchi R; Miele P; Bechelany M
    ChemSusChem; 2018 Sep; 11(18):3023-3047. PubMed ID: 29984904
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles.
    Liu G; Han C; Pelaez M; Zhu D; Liao S; Likodimos V; Ioannidis N; Kontos AG; Falaras P; Dunlop PS; Byrne JA; Dionysiou DD
    Nanotechnology; 2012 Jul; 23(29):294003. PubMed ID: 22743554
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photocatalytic degradation of eleven microcystin variants and nodularin by TiO2 coated glass microspheres.
    Pestana CJ; Edwards C; Prabhu R; Robertson PKJ; Lawton LA
    J Hazard Mater; 2015 Dec; 300():347-353. PubMed ID: 26218301
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fenton-based technologies as efficient advanced oxidation processes for microcystin-LR degradation.
    Liang D; Li N; An J; Ma J; Wu Y; Liu H
    Sci Total Environ; 2021 Jan; 753():141809. PubMed ID: 33207450
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.
    Hamzezadeh-Nakhjavani S; Tavakoli O; Akhlaghi SP; Salehi Z; Esmailnejad-Ahranjani P; Arpanaei A
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18859-73. PubMed ID: 26206125
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Visible light-driven photocatalytic degradation of Microcystin-LR by Bi
    Zhan M; Hong Y; Fang Z; Qiu D
    Chemosphere; 2023 Apr; 321():138105. PubMed ID: 36764614
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A review of the photocatalytic degradation of organic pollutants in water by modified TiO
    Li X; Wei H; Song T; Lu H; Wang X
    Water Sci Technol; 2023 Sep; 88(6):1495-1507. PubMed ID: 37768751
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photocatalytic Carbon Dioxide Conversion by Structurally and Materially Modified Titanium Dioxide Nanostructures.
    Fawzi T; Rani S; Roy SC; Lee H
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897719
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The photocatalytic decomposition of microcystin-LR using selected titanium dioxide materials.
    Liu I; Lawton LA; Bahnemann DW; Liu L; Proft B; Robertson PK
    Chemosphere; 2009 Jul; 76(4):549-53. PubMed ID: 19375779
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Degradation of cyanotoxin microcystin-LR in synthetic and natural waters by chemical-free UV/VUV radiation.
    Chintalapati P; Mohseni M
    J Hazard Mater; 2020 Jan; 381():120921. PubMed ID: 31374374
    [TBL] [Abstract][Full Text] [Related]  

  • 55. LC/MS/MS structure elucidation of reaction intermediates formed during the TiO(2) photocatalysis of microcystin-LR.
    Antoniou MG; Shoemaker JA; de la Cruz AA; Dionysiou DD
    Toxicon; 2008 May; 51(6):1103-18. PubMed ID: 18377943
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photodegradation of microcystin-LR by pyridyl iron porphyrin immobilized on NaY zeolite.
    Wang S; Zhang H; Ge H; Shi Y; Li Z
    Water Sci Technol; 2020 Jan; 81(1):121-130. PubMed ID: 32293595
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of environmental factors on the growth and microcystin production of Microcystis aeruginosa under TiO
    Zhang J; Jiang L; Wu D; Yin Y; Guo H
    Sci Total Environ; 2020 Sep; 734():139443. PubMed ID: 32454338
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst.
    Shephard GS; Stockenström S; de Villiers D; Engelbrecht WJ; Wessels GF
    Water Res; 2002 Jan; 36(1):140-6. PubMed ID: 11767740
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Further Understanding of Degradation Pathways of Microcystin-LR by an Indigenous
    Ding Q; Liu K; Xu K; Sun R; Zhang J; Yin L; Pu Y
    Toxins (Basel); 2018 Dec; 10(12):. PubMed ID: 30558170
    [TBL] [Abstract][Full Text] [Related]  

  • 60. N,P-codoped carbon quantum dots-decorated TiO
    Bai L; Liu L; Pang J; Chen Z; Wei M; Wu Y; Dong G; Zhang J; Shan D; Wang B
    Environ Sci Pollut Res Int; 2022 Feb; 29(7):9932-9943. PubMed ID: 34510339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.