These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 32673916)
1. Mechanochemical activation of titanium slag for effective selective catalytic reduction of nitric oxide. Hou H; Zhou J; Ji M; Yue Y; Qian G; Zhang J Sci Total Environ; 2020 Nov; 743():140733. PubMed ID: 32673916 [TBL] [Abstract][Full Text] [Related]
2. Manganese-cerium oxide (MnO Xu Y; Liu R; Ye F; Jia F; Ji L J Air Waste Manag Assoc; 2017 Aug; 67(8):899-909. PubMed ID: 28287904 [TBL] [Abstract][Full Text] [Related]
3. Production of an effective catalyst with increased oxygen vacancies from manganese slag for selective catalytic reduction of nitric oxide. Wang G; Zhang J; Zhou J; Qian G J Environ Manage; 2019 Jun; 239():90-95. PubMed ID: 30889522 [TBL] [Abstract][Full Text] [Related]
4. Understanding of the high hydrothermal stability of a catalyst prepared from Mn slag for low-temperature selective catalytic reduction of NO. Hua H; Zeng J; Wang G; Zhang J; Zhou J; Pan Y; Liu Q; Xu Y; Qian G; Xu ZP J Hazard Mater; 2020 Jan; 381():120935. PubMed ID: 31401458 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamics analysis and experiments on Ti-bearing blast furnace slag leaching enhanced by sulfuric acid roasting. Zhou L; Peng T; Sun H; Wang S RSC Adv; 2022 Dec; 12(54):34990-35001. PubMed ID: 36540258 [TBL] [Abstract][Full Text] [Related]
6. A plasma thermal slag-derived from hazardous waste has a born hydrothermal stability. Zhang J; Zeng J; Wu J; Yue Y; Zhang J; Qian G J Hazard Mater; 2021 Jan; 401():123444. PubMed ID: 32763719 [TBL] [Abstract][Full Text] [Related]
7. A novel process for preparation of titanium dioxide from Ti-bearing electric furnace slag: NH Zheng F; Guo Y; Qiu G; Chen F; Wang S; Sui Y; Jiang T; Yang L J Hazard Mater; 2018 Feb; 344():490-498. PubMed ID: 29096260 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous recycling of Si and Ti from diamond wire saw silicon powder and Ti-bearing blast furnace slag via reduction smelting: An investigation of the effects of refractories on recycling. Zhang Y; Lei Y; Ma W; Ren Y Waste Manag; 2023 Feb; 157():36-46. PubMed ID: 36521299 [TBL] [Abstract][Full Text] [Related]
9. The reduction of Fe-bearing copper slag for its use as a catalyst in carbon oxide hydrogenation to methane. A contribution to sustainable catalysis. Fuentes I; Ulloa C; Jiménez R; García X J Hazard Mater; 2020 Apr; 387():121693. PubMed ID: 31787399 [TBL] [Abstract][Full Text] [Related]
10. Direct Reduction of Fe, Ni and Cr from Oxides of Waste Products Used in Briquettes for Slag Foaming in EAF. Davydenko A; Karasev A; Glaser B; Jönsson P Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31640112 [TBL] [Abstract][Full Text] [Related]
11. Ultrasonication-Assisted Preparation of a Mn-Based Blast Furnace Slag Catalyst: Effects on the Low-Temperature Selective Catalytic Reduction Denitration Process. Lei Z; Wei K; Yang J; Zhang L; Lu X; Fang B ACS Omega; 2021 Sep; 6(36):23059-23066. PubMed ID: 34549106 [TBL] [Abstract][Full Text] [Related]
12. Synergistic Leaching of Titanium, Aluminum, and Magnesium Components during Dilute Acid Pressure Treatment of High-Titanium Blast Furnace Slag. Yuan K; He S; Yu B; Qian S; Wu X; Li W; Zhao C Molecules; 2024 Jul; 29(14):. PubMed ID: 39064916 [TBL] [Abstract][Full Text] [Related]
13. Co-Removal of Fe/V Impurity in H Yang F; Peng Q; Wang J; Xiang L Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202467 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of extracting valuable components from Ti-bearing blast furnace slag by acidolysis with sulphuric acid. Wang Y; Gao X; He S; Guo J Front Chem; 2024; 12():1369937. PubMed ID: 38389723 [TBL] [Abstract][Full Text] [Related]
15. Selective nitridation-corrosion process to recover vanadium, titanium, chromium, and iron from vanadium slag. Hu Q; Pan S; Gao X; Liu Y; Huang Q; You Y; You Z; Lv X J Environ Manage; 2023 Jan; 325(Pt B):116604. PubMed ID: 36308966 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic and Experimental Studies of Selective Decomposition of Diopside in Ti-Bearing Blast Furnace Slag. Kumai E; Yang F; Xiang L ACS Omega; 2024 Aug; 9(34):36635-36639. PubMed ID: 39220505 [TBL] [Abstract][Full Text] [Related]
17. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile. Teo PT; Anasyida AS; Basu P; Nurulakmal MS Waste Manag; 2014 Dec; 34(12):2697-708. PubMed ID: 25242607 [TBL] [Abstract][Full Text] [Related]
18. Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag. Xiang J; Huang Q; Lv X; Bai C J Hazard Mater; 2017 Aug; 336():1-7. PubMed ID: 28463734 [TBL] [Abstract][Full Text] [Related]
19. Innovative method for minimization of waste containing Fe, Mn and Ti during comprehensive utilization of vanadium slag. Liu S; Wang L; Chou KC Waste Manag; 2021 May; 127():179-188. PubMed ID: 33945936 [TBL] [Abstract][Full Text] [Related]
20. Recycling of Ti and Si from Ti-bearing blast furnace slag and diamond wire saw silicon waste by flux alloying technique. Cao J; Gu HZ; Wu JJ; Wei KX; Zeng Y; Ma WH J Environ Manage; 2024 Jun; 362():121302. PubMed ID: 38824896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]