These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 32673916)
21. A novel recycling approach for efficient extraction of titanium from high-titanium-bearing blast furnace slag. Fan G; Wang M; Dang J; Zhang R; Lv Z; He W; Lv X Waste Manag; 2021 Feb; 120():626-634. PubMed ID: 33176939 [TBL] [Abstract][Full Text] [Related]
22. A novel approach for simultaneous recycling of Ti-bearing blast furnace slag, diamond wire saw Si powder, and Al alloy scrap for preparing TiSi Zhang Y; Lei Y; Ma W; Zhai C; Shi Z; Ren Y J Hazard Mater; 2022 Apr; 427():127905. PubMed ID: 34862105 [TBL] [Abstract][Full Text] [Related]
23. Efficient Recycling Blast Furnace Slag by Constructing Ti-Embedded Layered Double Hydroxide as Visible-Light-Driven Photocatalyst. Song N; Cai Y; Sun L; Hu P; Zhou Q; Wu J; Wang J Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208052 [TBL] [Abstract][Full Text] [Related]
24. Microwave roasting of blast furnace slag for carbon dioxide mineralization and energy analysis. Han Z; Gao J; Yuan X; Zhong Y; Ma X; Chen Z; Luo D; Wang Y RSC Adv; 2020 May; 10(30):17836-17844. PubMed ID: 35515632 [TBL] [Abstract][Full Text] [Related]
25. Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry. Quijorna N; de Pedro M; Romero M; Andrés A J Environ Manage; 2014 Jan; 132():278-86. PubMed ID: 24321287 [TBL] [Abstract][Full Text] [Related]
26. Titanium-Enriched Slag Prepared by Atmospheric Hydrochloric Acid Leaching of Mechanically Activated Vanadium Titanomagnetite Concentrates. Wu EH; Lin YH; Liu J; Wang Z; Liu JC; Yin GL; Li JW; Cheng XK; Jia YL Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832138 [TBL] [Abstract][Full Text] [Related]
27. Detoxication and recycling of chromium slag and C-bearing dust via composite agglomeration process (CAP)-blast furnace method. Tu Y; Su Z; Zhang Y; Jiang T Waste Manag; 2023 Sep; 171():227-236. PubMed ID: 37666148 [TBL] [Abstract][Full Text] [Related]
28. Synthesis of TiO2 visible light catalysts with controllable crystalline phase and morphology from Ti-bearing electric arc furnace molten slag. Li Y; Liu L; Guo M; Zhang M J Environ Sci (China); 2016 Sep; 47():14-22. PubMed ID: 27593268 [TBL] [Abstract][Full Text] [Related]
29. Effect of the Acidity Coefficient on the Properties of Molten Modified Blast Furnace Slag and Those of the Produced Slag Fibers. Du P; Zhang Y; Long Y; Xing L Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591446 [TBL] [Abstract][Full Text] [Related]
30. Catalytic pyrolysis of rain tree biomass with nano nickel oxide synthetized from nickel plating slag: A green path for treating waste by waste. Guo D; Hu M; Chen Z; Cui B; Zhang Q; Liu Y; Luo S; Ruan R; Liu Y Bioresour Technol; 2020 Nov; 315():123831. PubMed ID: 32707502 [TBL] [Abstract][Full Text] [Related]
31. Waste-slag hydrocalumite and derivatives as heterogeneous base catalysts. Kuwahara Y; Tsuji K; Ohmichi T; Kamegawa T; Mori K; Yamashita H ChemSusChem; 2012 Aug; 5(8):1523-32. PubMed ID: 22730209 [TBL] [Abstract][Full Text] [Related]
32. Hydraulic Activity and Microstructure Analysis of High-Titanium Slag. Hou X; Wang D; Shi Y; Guo H; He Y Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182884 [TBL] [Abstract][Full Text] [Related]
33. Mineralogical Properties of a Refractory Tantalum-Niobium Slag and the Effect of Roasting on the Leaching of Uranium-Thorium. Huang M; Hu K; Li X; Wang Y; Ouyang J; Zhou L; Liu Z Toxics; 2022 Aug; 10(8):. PubMed ID: 36006148 [TBL] [Abstract][Full Text] [Related]
34. High-purity recycling of hematite and Zn/Cu mixture from waste smelting slag. Huo Y; Song X; Zhu S; Chen Y; Lin X; Wu Y; Qu Z; Su T; Xie X Sci Rep; 2020 Jun; 10(1):9031. PubMed ID: 32494002 [TBL] [Abstract][Full Text] [Related]
35. Novel method for comprehensive utilization of MSWI fly ash through co-reduction with red mud to prepare crude alloy and cleaned slag. Geng C; Liu J; Wu S; Jia Y; Du B; Yu S J Hazard Mater; 2020 Feb; 384():121315. PubMed ID: 31581013 [TBL] [Abstract][Full Text] [Related]
36. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. van Zomeren A; van der Laan SR; Kobesen HB; Huijgen WJ; Comans RN Waste Manag; 2011 Nov; 31(11):2236-44. PubMed ID: 21741816 [TBL] [Abstract][Full Text] [Related]
37. Recovery of copper and cobalt from ancient slag. Bulut G Waste Manag Res; 2006 Apr; 24(2):118-24. PubMed ID: 16634226 [TBL] [Abstract][Full Text] [Related]
38. A recyclable method for titanium extraction and oxygen evolution from Ti-bearing slags. Pu Z; Wang W; Wang Z; Kou M; Luo Y; Ge J; Tao X; Wang M; Jiao S Fundam Res; 2024 Jan; 4(1):86-94. PubMed ID: 38933837 [TBL] [Abstract][Full Text] [Related]
39. An approach for simultaneous treatments of diamond wire saw silicon kerf and Ti-bearing blast furnace slag. Wang C; Lei Y; Ma W; Qiu P J Hazard Mater; 2021 Jan; 401():123446. PubMed ID: 32763720 [TBL] [Abstract][Full Text] [Related]
40. Copper slag as a catalyst for mercury oxidation in coal combustion flue gas. Li H; Zhang W; Wang J; Yang Z; Li L; Shih K Waste Manag; 2018 Apr; 74():253-259. PubMed ID: 29229180 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]