BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32673933)

  • 1. Estimation of anthropogenic heat emissions in China using Cubist with points-of-interest and multisource remote sensing data.
    Chen Q; Yang X; Ouyang Z; Zhao N; Jiang Q; Ye T; Qi J; Yue W
    Environ Pollut; 2020 Nov; 266(Pt 1):115183. PubMed ID: 32673933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing spatiotemporal dynamics of anthropogenic heat fluxes: A 20-year case study in Beijing-Tianjin-Hebei region in China.
    Chen S; Hu D; Wong MS; Ren H; Cao S; Yu C; Ho HC
    Environ Pollut; 2019 Jun; 249():923-931. PubMed ID: 30965544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Appraising regional anthropogenic heat flux using high spatial resolution NTL and POI data: A case study in the Beijing-Tianjin-Hebei region, China.
    Wang Y; Hu D; Yu C; Di Y; Wang S; Liu M
    Environ Pollut; 2022 Jan; 292(Pt A):118359. PubMed ID: 34648842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved anthropogenic heat flux model for fine spatiotemporal information in Southeast China.
    Qian J; Meng Q; Zhang L; Hu D; Hu X; Liu W
    Environ Pollut; 2022 Apr; 299():118917. PubMed ID: 35101557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping China's time-series anthropogenic heat flux with inventory method and multi-source remotely sensed data.
    Wang S; Hu D; Yu C; Chen S; Di Y
    Sci Total Environ; 2020 Sep; 734():139457. PubMed ID: 32464384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of anthropogenic heat emissions in urban Taiwan and their spatial patterns.
    Koralegedara SB; Lin CY; Sheng YF; Kuo CH
    Environ Pollut; 2016 Aug; 215():84-95. PubMed ID: 27179327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data.
    Chakraborty SD; Kant Y; Mitra D
    J Environ Manage; 2015 Jan; 148():143-52. PubMed ID: 24360191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote sensing of the urban heat island and its changes in Xiamen City of SE China.
    Xu HQ; Chen BQ
    J Environ Sci (China); 2004; 16(2):276-81. PubMed ID: 15137654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine-Scale Monitoring of Industrial Land and Its Intra-Structure Using Remote Sensing Images and POIs in the Hangzhou Bay Urban Agglomeration, China.
    Huang L; Xiang S; Zheng J
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially Explicit Modeling of Anthropogenic Heat Intensity in Beijing Center Area: An Investigation of Driving Factors with Urban Spatial Forms.
    Yang M; Cao S; Zhang D
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new global gridded anthropogenic heat flux dataset with high spatial resolution and long-term time series.
    Jin K; Wang F; Chen D; Liu H; Ding W; Shi S
    Sci Data; 2019 Jul; 6(1):139. PubMed ID: 31366934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of anthropogenic heat with different modeling ideas and its driving effect on urban heat islands in seven typical Chinese cities.
    Qian J; Meng Q; Zhang L; Schlink U; Hu X; Gao J
    Sci Total Environ; 2023 Aug; 886():163989. PubMed ID: 37164103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural-anthropogenic environment interactively causes the surface urban heat island intensity variations in global climate zones.
    Yuan Y; Li C; Geng X; Yu Z; Fan Z; Wang X
    Environ Int; 2022 Dec; 170():107574. PubMed ID: 36252437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration.
    Du H; Wang D; Wang Y; Zhao X; Qin F; Jiang H; Cai Y
    Sci Total Environ; 2016 Nov; 571():461-70. PubMed ID: 27424113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spatiotemporal evolution and impact mechanism of energy consumption carbon emissions in China from 2010 to 2020 by integrating multisource remote sensing data.
    Wang M; Wang Y; Teng F; Ji Y
    J Environ Manage; 2023 Nov; 346():119054. PubMed ID: 37742567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental consequences of rapid urbanization in zhejiang province, East china.
    Yang X; Yue W; Xu H; Wu J; He Y
    Int J Environ Res Public Health; 2014 Jul; 11(7):7045-59. PubMed ID: 25019266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Estimates of Population Exposure in Low-Elevation Coastal Zones of China.
    Yang X; Yao C; Chen Q; Ye T; Jin C
    Int J Environ Res Public Health; 2019 Oct; 16(20):. PubMed ID: 31635121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially explicit assessment of heat health risk by using multi-sensor remote sensing images and socioeconomic data in Yangtze River Delta, China.
    Chen Q; Ding M; Yang X; Hu K; Qi J
    Int J Health Geogr; 2018 May; 17(1):15. PubMed ID: 29801488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Method for Improving Spatial Allocation Accuracy of Industrial Energy Consumption and Implications for Polycyclic Aromatic Hydrocarbon Emissions in China.
    Li B; Wang J; Wu S; Jia Z; Li Y; Wang T; Zhou S
    Environ Sci Technol; 2019 Apr; 53(8):4326-4334. PubMed ID: 30912426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dasymetric mapping of urban population in China based on radiance corrected DMSP-OLS nighttime light and land cover data.
    Li X; Zhou W
    Sci Total Environ; 2018 Dec; 643():1248-1256. PubMed ID: 30189541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.