These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32673979)

  • 1. A review on the recycling processes of spent auto-catalysts: Towards the development of sustainable metallurgy.
    Trinh HB; Lee JC; Suh YJ; Lee J
    Waste Manag; 2020 Aug; 114():148-165. PubMed ID: 32673979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metals smelting-collection method for recycling of platinum group metals from waste catalysts: A mini review.
    Liu C; Sun S; Zhu X; Tu G
    Waste Manag Res; 2021 Jan; 39(1):43-52. PubMed ID: 33198602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of platinum group metals from catalytic converters.
    Chidunchi I; Kulikov M; Sаfarov R; Kopishev E
    Heliyon; 2024 Feb; 10(3):e25283. PubMed ID: 38327460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on management of waste three-way catalysts and strategies for recovery of platinum group metals from them.
    Sun S; Jin C; He W; Li G; Zhu H; Huang J
    J Environ Manage; 2022 Mar; 305():114383. PubMed ID: 34968938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of PGMs capture from spent automobile catalyst by copper from waste printed circuit boards with simultaneous pollutants transformation.
    Chen S; Song Q; Xu Z
    Waste Manag; 2024 Sep; 186():130-140. PubMed ID: 38878477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential prediction and coupling relationship revealing for recovery of platinum group metals from spent auto-exhaust catalysts based on machine learning.
    Liu Y; Xu Z
    J Environ Manage; 2024 Aug; 365():121533. PubMed ID: 38917541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
    Kaya M
    Waste Manag; 2016 Nov; 57():64-90. PubMed ID: 27543174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of synergistic capturing platinum group metals by Fe-Sn and its mechanism.
    He X; Ding Y; Shi Z; Zhao B; Zhang C; Han F; Ren J; Zhang S
    J Environ Manage; 2024 May; 358():120847. PubMed ID: 38626486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of metallurgical iron-containing solid waste-based catalysts as activator of persulfate for organic pollutants degradation.
    Wang Y; Hu X; Chen X; Ren Z; Li Y; Miao J; He Y; Zhang P; Li C; Zhu Q
    Chemosphere; 2024 Jul; 359():142276. PubMed ID: 38761830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.
    Zhan L; Xu Z
    Environ Sci Technol; 2014 Dec; 48(24):14092-102. PubMed ID: 25407107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slag design and iron capture mechanism for recovering low-grade Pt, Pd, and Rh from leaching residue of spent auto-exhaust catalysts.
    Zheng H; Ding Y; Wen Q; Zhao S; He X; Zhang S; Dong C
    Sci Total Environ; 2022 Jan; 802():149830. PubMed ID: 34464795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biohydrometallurgy as an environmentally friendly approach in metals recovery from electrical waste: A review.
    Habibi A; Shamshiri Kourdestani S; Hadadi M
    Waste Manag Res; 2020 Mar; 38(3):232-244. PubMed ID: 31918634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total recycling of all the components from spent auto-catalyst by NaOH roasting-assisted hydrometallurgical route.
    Trinh HB; Lee JC; Srivastava RR; Kim S
    J Hazard Mater; 2019 Nov; 379():120772. PubMed ID: 31254787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallurgical processes unveil the unexplored "sleeping mines" e- waste: a review.
    Thakur P; Kumar S
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):32359-32370. PubMed ID: 32533494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of Platinum Group Metals from Spent Automotive Catalysts Using Lithium Salts and Hydrochloric Acid.
    Kuzuhara S; Ota M; Kasuya R
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Techno-economic feasibility of a recycling plant for the extraction of metals and boehmite from hazardous petroleum spent catalysts.
    Marafi M; Pathak A; Rana MS
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):17339-17353. PubMed ID: 38337119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable treatment of bimetallic (Ag-Pd/α-Al
    Choi S; Ilyas S; Hwang G; Kim H
    J Environ Manage; 2021 Aug; 291():112748. PubMed ID: 33971514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. E-waste mining and the transition toward a bio-based economy: The case of lamp phosphor powder.
    Giese EC
    MRS Energy Sustain; 2022; 9(2):494-500. PubMed ID: 37520803
    [No Abstract]   [Full Text] [Related]  

  • 19. Efficient HCl leaching of platinum group metals from waste three-way catalysts: A study on kinetics and mechanisms.
    Sun S; Zhao W; Jin C; He W; Li G; Zhu H
    Environ Res; 2023 Dec; 238(Pt 1):117148. PubMed ID: 37716391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycle, Recover and Repurpose Strategy of Spent Li-ion Batteries and Catalysts: Current Status and Future Opportunities.
    Garole DJ; Hossain R; Garole VJ; Sahajwalla V; Nerkar J; Dubal DP
    ChemSusChem; 2020 Jun; 13(12):3079-3100. PubMed ID: 32302053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.