These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32674431)

  • 21. [Effect of reduction by sodium borohydride on the structural characteristics of brown-rotted lignin].
    Li GY; Sun QN; Qin TF; Huang LH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1930-3. PubMed ID: 20828002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds.
    Ohashi Y; Uno Y; Amirta R; Watanabe T; Honda Y; Watanabe T
    Org Biomol Chem; 2011 Apr; 9(7):2481-91. PubMed ID: 21327224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the Cross-Linking Reaction of Lignin with Triethyl Phosphate by MALDI-TOF and
    Basso MC; Pizzi A; Delmotte L; Abdalla S
    Polymers (Basel); 2017 Jun; 9(6):. PubMed ID: 30970885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanochemical Lignin-Mediated Strecker Reaction.
    Dabral S; Turberg M; Wanninger A; Bolm C; Hernández JG
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28106742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity.
    Pan X; Kadla JF; Ehara K; Gilkes N; Saddler JN
    J Agric Food Chem; 2006 Aug; 54(16):5806-13. PubMed ID: 16881681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lignin phenolation by graft copolymerization to boost its reactivity.
    Singh M; Lee SC; Won K
    Int J Biol Macromol; 2024 May; 266(Pt 2):131258. PubMed ID: 38556229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comprehensive approach for quantitative lignin characterization by NMR spectroscopy.
    Capanema EA; Balakshin MY; Kadla JF
    J Agric Food Chem; 2004 Apr; 52(7):1850-60. PubMed ID: 15053520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in chemical structures of wheat straw auto-hydrolysis lignin by 3-hydroxyanthranilic acid as a laccase mediator.
    Feng N; Guo L; Ren H; Xie Y; Jiang Z; Ek M; Zhai H
    Int J Biol Macromol; 2019 Feb; 122():210-215. PubMed ID: 30365991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy.
    Munk L; Andersen ML; Meyer AS
    Enzyme Microb Technol; 2017 Nov; 106():88-96. PubMed ID: 28859815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study toward a More Reliable Approach to Elucidate the Lignin Structure-Property-Performance Correlation.
    Diment D; Tkachenko O; Schlee P; Kohlhuber N; Potthast A; Budnyak TM; Rigo D; Balakshin M
    Biomacromolecules; 2024 Jan; 25(1):200-212. PubMed ID: 38112036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of laccase-catalyzed cross-linking of organosolv lignin and lignosulfonates.
    Gillgren T; Hedenström M; Jönsson LJ
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):438-446. PubMed ID: 28711620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissolving Lignin in Water through Enzymatic Sulfation with Aryl Sulfotransferase.
    Prinsen P; Narani A; Hartog AF; Wever R; Rothenberg G
    ChemSusChem; 2017 May; 10(10):2267-2273. PubMed ID: 28425669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation into the lignin decomposition mechanism by analysis of the pyrolysis product of Pinus radiata.
    Kim YM; Jae J; Myung S; Sung BH; Dong JI; Park YK
    Bioresour Technol; 2016 Nov; 219():371-377. PubMed ID: 27501034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of pre-acetylation of hydroxyl functional groups by choline chloride/acetic anhydride on subsequent lignin pyrolysis.
    Li T; Yin Y; Wu S; Ma H; Zhang F
    Bioresour Technol; 2020 Dec; 317():124034. PubMed ID: 32829115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols.
    Lund M; Ragauskas AJ
    Appl Microbiol Biotechnol; 2001 Jun; 55(6):699-703. PubMed ID: 11525617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel determination of the total phenolic content in crude plant extracts by the use of 1H NMR of the -OH spectral region.
    Nerantzaki AA; Tsiafoulis CG; Charisiadis P; Kontogianni VG; Gerothanassis IP
    Anal Chim Acta; 2011 Feb; 688(1):54-60. PubMed ID: 21296205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.
    Zhao X; Zhang Y; Hu H; Huang Z; Yang M; Chen D; Huang K; Huang A; Qin X; Feng Z
    Int J Biol Macromol; 2016 Oct; 91():1081-9. PubMed ID: 27344951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin.
    Tan YT; Ngoh GC; Chua ASM
    Bioresour Technol; 2019 Jun; 281():359-366. PubMed ID: 30831515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of structural modification and thermal characteristics of lignin after heat treatment.
    Kim JY; Hwang H; Oh S; Kim YS; Kim UJ; Choi JW
    Int J Biol Macromol; 2014 May; 66():57-65. PubMed ID: 24530642
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.